Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 29;91(7):2502–2506. doi: 10.1073/pnas.91.7.2502

Reaction of germinal centers in the T-cell-independent response to the bacterial polysaccharide alpha(1-->6)dextran.

D Wang 1, S M Wells 1, A M Stall 1, E A Kabat 1
PMCID: PMC43397  PMID: 7511812

Abstract

Primary immunization of BALB/c mice with alpha(1-->6)dextran (DEX), a native bacterial polysaccharide, induces an unexpected pattern of splenic B-cell responses. After a peak of antibody-secreting B-cell response at day 4, deposition of dextran-anti-dextran immune complexes, as revealed by staining with both dextran and antibodies to dextran, occurs and persists in splenic follicles until at least the fourth week after immunization. Antigen-specific B cells appear and proliferate in such follicles, leading by day 11 to development of DEX-specific germinal centers as characterized by the presence of distinct regions of DEX+ peanut agglutinin-positive (PNA+) cells. At this time, fluorescence-activated cell sorter analysis also reveals the appearance of a distinct population of DEX+ PNA+ splenic B cells. In contrast, DEX+ PNA- cells, characterized by intense cytoplasmic staining, are present outside of splenic follicles, peak at day 4 to day 5, and persist until at least day 28. The frequency of these cells correlates with DEX-specific antibody-secreting cells, as detected by the ELISA-spot assay. Thus, in addition to the expected plasma cellular response, the typical T-cell-independent type II antigen, DEX, surprisingly also elicits the formation of antigen-specific germinal centers. These observations raise fundamental questions about the roles of germinal centers in T-cell-independent immune responses.

Full text

PDF
2502

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akolkar P. N., Sikder S. K., Bhattacharya S. B., Liao J., Gruezo F., Morrison S. L., Kabat E. A. Different VL and VH germ-line genes are used to produce similar combining sites with specificity for alpha(1----6)dextrans. J Immunol. 1987 Jun 15;138(12):4472–4479. [PubMed] [Google Scholar]
  2. Berek C., Ziegner M. The maturation of the immune response. Immunol Today. 1993 Aug;14(8):400–404. doi: 10.1016/0167-5699(93)90143-9. [DOI] [PubMed] [Google Scholar]
  3. Chen H. T., Makover S. D., Kabat E. A. Immunochemical studies on monoclonal antibodies to stearyl-isomaltotetraose from C58/J and a C57BL/10 nude mouse. Mol Immunol. 1987 Apr;24(4):333–338. doi: 10.1016/0161-5890(87)90174-x. [DOI] [PubMed] [Google Scholar]
  4. Coffman R. L., Lebman D. A., Rothman P. Mechanism and regulation of immunoglobulin isotype switching. Adv Immunol. 1993;54:229–270. doi: 10.1016/s0065-2776(08)60536-2. [DOI] [PubMed] [Google Scholar]
  5. Fernandez C., Möller G. Immunological unresponsiveness to thymus-independent antigens: two fundamentally different genetic mechanisms of B-cell unresponsiveness to dextran. J Exp Med. 1977 Dec 1;146(6):1663–1677. doi: 10.1084/jem.146.6.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fernandez C., Möller G. Serum antibody and cellular immune response in mice to dextran B512. Cell Immunol. 1990 Nov;131(1):41–51. doi: 10.1016/0008-8749(90)90233-h. [DOI] [PubMed] [Google Scholar]
  7. Förster I., Rajewsky K. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic, newborn mice. Eur J Immunol. 1987 Apr;17(4):521–528. doi: 10.1002/eji.1830170414. [DOI] [PubMed] [Google Scholar]
  8. Howard J. G., Vicari G., Courtenay B. M. Influence of molecular structure on the tolerogenicity of bacterial dextrans. I. The alpha1--6-linked epitope of dextran B512. Immunology. 1975 Oct;29(4):585–597. [PMC free article] [PubMed] [Google Scholar]
  9. Humphrey J. H. Tolerogenic or immunogenic activity of hapten-conjugated polysaccharides correlated with cellular localization. Eur J Immunol. 1981 Mar;11(3):212–220. doi: 10.1002/eji.1830110310. [DOI] [PubMed] [Google Scholar]
  10. Jacobson E. B., Caporale L. H., Thorbecke G. J. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell Immunol. 1974 Sep;13(3):416–430. doi: 10.1016/0008-8749(74)90261-5. [DOI] [PubMed] [Google Scholar]
  11. Jeanes A. Immunochemical and related interactions with dextrans reviewed in terms of improved structural information. Mol Immunol. 1986 Sep;23(9):999–1028. doi: 10.1016/0161-5890(86)90131-8. [DOI] [PubMed] [Google Scholar]
  12. Kantor A. B., Stall A. M., Adams S., Herzenberg L. A., Herzenberg L. A. Differential development of progenitor activity for three B-cell lineages. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3320–3324. doi: 10.1073/pnas.89.8.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kraal G., Weissman I. L., Butcher E. C. Germinal centre B cells: antigen specificity and changes in heavy chain class expression. Nature. 1982 Jul 22;298(5872):377–379. doi: 10.1038/298377a0. [DOI] [PubMed] [Google Scholar]
  14. Kroese F. G., Timens W., Nieuwenhuis P. Germinal center reaction and B lymphocytes: morphology and function. Curr Top Pathol. 1990;84(Pt 1):103–148. doi: 10.1007/978-3-642-75519-4_5. [DOI] [PubMed] [Google Scholar]
  15. Matsuda T., Kabat E. A. Variable region cDNA sequences and antigen binding specificity of mouse monoclonal antibodies to isomaltosyl oligosaccharides coupled to proteins. T-dependent analogues of alpha(1----6)dextran. J Immunol. 1989 Feb 1;142(3):863–870. [PubMed] [Google Scholar]
  16. Mond J. J., Stein K. E., Subbarao B., Paul W. E. Analysis of B cell activation requirements with TNP-conjugated polyacrylamide beads. J Immunol. 1979 Jul;123(1):239–245. [PubMed] [Google Scholar]
  17. Newman B. A., Liao J., Gruezo F., Sugii S., Kabat E. A., Torii M., Clevinger B. L., Davie J. M., Schilling J., Bond M. Immunochemical studies of mouse monoclonal antibodies to dextran B1355S--II. Combining site specificity, sequence, idiotype and affinity. Mol Immunol. 1986 Apr;23(4):413–424. doi: 10.1016/0161-5890(86)90139-2. [DOI] [PubMed] [Google Scholar]
  18. Newman B., Sugii S., Kabat E. A., Torii M., Clevinger B. L., Schilling J., Bond M., Davie J. M., Hood L. Combining site specificities of mouse hybridoma antibodies to dextran B1355S. J Exp Med. 1983 Jan 1;157(1):130–140. doi: 10.1084/jem.157.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rose M. L., Birbeck M. S., Wallis V. J., Forrester J. A., Davies A. J. Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature. 1980 Mar 27;284(5754):364–366. doi: 10.1038/284364a0. [DOI] [PubMed] [Google Scholar]
  20. Scher I. The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol. 1982;33:1–71. doi: 10.1016/s0065-2776(08)60834-2. [DOI] [PubMed] [Google Scholar]
  21. Seppälä I., Pelkonen J., Mäkelä O. Isotypes of antibodies induced by plain dextran or a dextran-protein conjugate. Eur J Immunol. 1985 Aug;15(8):827–833. doi: 10.1002/eji.1830150816. [DOI] [PubMed] [Google Scholar]
  22. Sikder S. K., Borden P., Gruezo F., Akolkar P. N., Bhattacharya S. B., Morrison S. L., Kabat E. A. Amino acid substitutions in VH CDR2 change the idiotype but not the antigen-binding of monoclonal antibodies to alpha(1----6)dextrans. J Immunol. 1989 Feb 1;142(3):888–893. [PubMed] [Google Scholar]
  23. Tew J. G., Kosco M. H., Burton G. F., Szakal A. K. Follicular dendritic cells as accessory cells. Immunol Rev. 1990 Oct;117:185–211. doi: 10.1111/j.1600-065x.1990.tb00573.x. [DOI] [PubMed] [Google Scholar]
  24. Tsiagbe V. K., Linton P. J., Thorbecke G. J. The path of memory B-cell development. Immunol Rev. 1992 Apr;126:113–141. doi: 10.1111/j.1600-065x.1992.tb00634.x. [DOI] [PubMed] [Google Scholar]
  25. Wallick S. C., Kabat E. A., Morrison S. L. Glycosylation of a VH residue of a monoclonal antibody against alpha (1----6) dextran increases its affinity for antigen. J Exp Med. 1988 Sep 1;168(3):1099–1109. doi: 10.1084/jem.168.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang D. N., Chen H. T., Liao J., Akolkar P. N., Sikder S. K., Gruezo F., Kabat E. A. Two families of monoclonal antibodies to alpha(1----6)dextran, VH19.1.2 and VH9.14.7, show distinct patterns of J kappa and JH minigene usage and amino acid substitutions in CDR3. J Immunol. 1990 Nov 1;145(9):3002–3010. [PubMed] [Google Scholar]
  27. Wang D., Liao J., Mitra D., Akolkar P. N., Gruezo F., Kabat E. A. The repertoire of antibodies to a single antigenic determinant. Mol Immunol. 1991 Dec;28(12):1387–1397. doi: 10.1016/0161-5890(91)90041-h. [DOI] [PubMed] [Google Scholar]
  28. Weissman I. L., Gutman G. A., Friedberg S. H., Jerabek L. Lymphoid tissue architecture. III. Germinal centers, T cells, and thymus-dependent vs thymus-independent antigens. Adv Exp Med Biol. 1976;66:229–237. doi: 10.1007/978-1-4613-4355-4_35. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES