Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):4787–4791. doi: 10.1073/pnas.71.12.4787

Isolation of DNA-Membrane Complex in Bacillus subtilis

Noboru Sueoka 1, Joan M Hammers 1
PMCID: PMC433982  PMID: 4216023

Abstract

A DNA-membrane complex of Bacillus subtilis was separated from the bulk of the membrane by CsCl-sucrose double gradient centrifugation. The complex has a CsCl-sucrose buoyant density of 1.35-1.45 g/cm3. Gel electrophoretic analyses show that the complex has about 5% of the whole membrane proteins and contains proteins unique to the complex as well as a small amount of membrane proteins. DNA in the complex is enriched for a genetic marker close to the origin (pur A16) and for one near the terminus (metB5). Artifactual formation of the complex during the lysate preparation was shown to be unlikely.

Keywords: replication

Full text

PDF
4787

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts B. M., Amodio F. J., Jenkins M., Gutmann E. D., Ferris F. L. Studies with DNA-cellulose chromatography. I. DNA-binding proteins from Escherichia coli. Cold Spring Harb Symp Quant Biol. 1968;33:289–305. doi: 10.1101/sqb.1968.033.01.033. [DOI] [PubMed] [Google Scholar]
  2. Anthony D. D., Zeszotek E., Goldthwait D. A. Initiation by the DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1966 Sep;56(3):1026–1033. doi: 10.1073/pnas.56.3.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballesta J. P., Cundliffe E., Daniels M. J., Silverstein J. L., Susskind M. M., Schaechter M. Some unique properties of the deoxyribonucleic acid-bearing portion of the bacterial membrane. J Bacteriol. 1972 Oct;112(1):195–199. doi: 10.1128/jb.112.1.195-199.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bott K. F., Wilson G. A. Development of competence in the Bacillus subtilis transformation system. J Bacteriol. 1967 Sep;94(3):562–570. doi: 10.1128/jb.94.3.562-570.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniels M. J. Some features of the bacterial membrane studied with the aid of a new fractionation technique. Biochem J. 1971 Apr;122(2):197–207. doi: 10.1042/bj1220197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fielding P., Fox C. F. Evidence for stable attachment of DNA to membrane at the replication origin of Escherichia coli. Biochem Biophys Res Commun. 1970 Oct 9;41(1):157–162. doi: 10.1016/0006-291x(70)90482-1. [DOI] [PubMed] [Google Scholar]
  7. Fukuda R., Ishihama A. Isolation of an RNA polymearse-DNA complex by CsCl equilibrium centrifugation. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1255–1261. doi: 10.1016/0006-291x(71)90153-7. [DOI] [PubMed] [Google Scholar]
  8. Ivarie R. D., Pène J. J. Association of the Bacillus subtilis chromosome with the cell membrane: resolution of free and bound deoxyribonucleic acid on renografin gradients. J Bacteriol. 1970 Nov;104(2):839–850. doi: 10.1128/jb.104.2.839-850.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kennett R. H., Sueoka N. Gene expression during outgrowth of Bacillus subtilis spores. The relationship between gene order on the chromosome and temporal sequence of enzyme synthesis. J Mol Biol. 1971 Aug 28;60(1):31–44. doi: 10.1016/0022-2836(71)90445-1. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Leif R. C. Density gradient system. I. Formation and fractionation of density gradients. Anal Biochem. 1968 Oct 24;25(1):271–282. doi: 10.1016/0003-2697(68)90102-4. [DOI] [PubMed] [Google Scholar]
  12. O'Sullivan A., Sueoka N. Sequential replication of the Bacillus subtilis chromosome. IV. Genetic mapping by density transfer experiment. J Mol Biol. 1967 Jul 28;27(2):349–368. doi: 10.1016/0022-2836(67)90025-3. [DOI] [PubMed] [Google Scholar]
  13. O'Sullivan M. A., Sueoka N. Membrane attachment of the replication origins of a multifork (dichotomous) chromosome in Bacillus subtilis. J Mol Biol. 1972 Aug 21;69(2):237–248. doi: 10.1016/0022-2836(72)90228-8. [DOI] [PubMed] [Google Scholar]
  14. Ohi S., Sueoka N. Adenosine triphosphate-dependent deoxyribonuclease in Bacillus subtilis. J Biol Chem. 1973 Nov 10;248(21):7336–7344. [PubMed] [Google Scholar]
  15. Olsen W. L., Heidrich H. G., Hannig K., Hofschneider P. H. Deoxyribonucleic acid-envelope complexes isolated from Escherichia coli by free-flow electrophoresis: biochemical and electron microscope characterization. J Bacteriol. 1974 May;118(2):646–653. doi: 10.1128/jb.118.2.646-653.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RYTER A., JACOB F. ETUDE AU MICROSCOPE 'ELECTRONIQUE DE LA LIAISON ENTRE NOYAU ET M'ESOSOME CHEZ BACILLUS SUBTILIS. Ann Inst Pasteur (Paris) 1964 Sep;107:384–400. [PubMed] [Google Scholar]
  17. Riggs A. D., Suzuki H., Bourgeois S. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol. 1970 Feb 28;48(1):67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
  18. Smith D. W., Hanawalt P. C. Properties of the growing point region in the bacterial chromosome. Biochim Biophys Acta. 1967 Dec 19;149(2):519–531. doi: 10.1016/0005-2787(67)90180-3. [DOI] [PubMed] [Google Scholar]
  19. Snyder R. W., Young F. E. Association between the chromosome and the cytoplasmic membrane in Bacillus subtilis. Biochem Biophys Res Commun. 1969 May 8;35(3):354–362. doi: 10.1016/0006-291x(69)90506-3. [DOI] [PubMed] [Google Scholar]
  20. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  22. Sueoka N., Quinn W. G. Membrane attachment of the chromosome replication origin in Bacillus subtilis. Cold Spring Harb Symp Quant Biol. 1968;33:695–705. doi: 10.1101/sqb.1968.033.01.078. [DOI] [PubMed] [Google Scholar]
  23. Worcel A., Burgi E. Properties of a membrane-attached form of the folded chromosome of Escherichia coli. J Mol Biol. 1974 Jan 5;82(1):91–105. doi: 10.1016/0022-2836(74)90576-2. [DOI] [PubMed] [Google Scholar]
  24. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yamaguchi K., Murakami S., Yoshikawa H. Chromosome-membrane association in Bacillus subtilis. I. DNA release from membrane fraction. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1559–1565. doi: 10.1016/s0006-291x(71)80264-4. [DOI] [PubMed] [Google Scholar]
  26. Yamaguchi K., Yoshikawa H. Topography of chromosome membrane junction in Bacillus subtilis. Nat New Biol. 1973 Aug 15;244(137):204–206. doi: 10.1038/newbio244204a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES