Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):4836–4838. doi: 10.1073/pnas.71.12.4836

Non-Repairable Strand Breaks Induced by 125I Incorporated into Mammalian DNA

R B Painter *, B R Young *, H J Burki
PMCID: PMC433992  PMID: 4531021

Abstract

When 125I is incorporated into Chinese hamster DNA (via 125I-labeled iododeoxyuridine) and the cells are stored at 77°K, the resulting decays of the isotope cause 4 to 5 breaks/single-strand per disintegration. On the average, about 50% of these breaks are repaired. In contrast, under the same conditions of storage and in the same range of total strand breaks/cell, 70-100% of the breaks induced by x-radiation are repaired. Thus, the extreme toxicity of 125I when incorporated into DNA is correlated with the unrepaired breaks caused by decay of this isotope. These results suggest that unrepaired DNA strand breaks may be important in cell killing after treatments which damage DNA.

Keywords: x-radiation, 125I-labeled iododeoxyuridine, DNA repair, single-strand breaks

Full text

PDF
4836

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burki H. J., Carrano A. V. Relative radiosensitivities of tetraploid and diploid Chinese hamster cells in culture exposed to ionizing radiation. Mutat Res. 1973 Feb;17(2):277–282. doi: 10.1016/0027-5107(73)90178-4. [DOI] [PubMed] [Google Scholar]
  2. Burki H. J., Roots R., Feinendegen L. E., Bond V. P. Inactivation of mammalian cells after disintegration of 3H or 125I in cell DNA at -196 degrees C. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Oct;24(4):363–375. doi: 10.1080/09553007314551221. [DOI] [PubMed] [Google Scholar]
  3. Cleaver J. E., Thomas G. H., Burki H. J. Biological damage from intranuclear tritium: DNA strand breaks and their repair. Science. 1972 Sep 15;177(4053):996–998. doi: 10.1126/science.177.4053.996. [DOI] [PubMed] [Google Scholar]
  4. Corry P. M., Cole A. Double strand rejoining in mammalian DNA. Nat New Biol. 1973 Sep 26;245(143):100–101. [PubMed] [Google Scholar]
  5. Kapp D. S., Smith K. C. Repair of radiation-induced damage in Escherichia coli. II. Effect of rec and uvr mutations on radiosensitivity, and repair of x-ray-induced single-strand breaks in deoxyribonucleic acid. J Bacteriol. 1970 Jul;103(1):49–54. doi: 10.1128/jb.103.1.49-54.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kapp D. S., Smith K. C. The chemical inhibition of the repair of single-strand breaks in DNA: post-irradiation sensitization to x-rays. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;19(3):255–262. doi: 10.1080/09553007114550361. [DOI] [PubMed] [Google Scholar]
  7. Krisch R. E., Ley R. D. Induction of lethality and DNA breakage by the decay of iodine-125 in bacteriophage T4. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Jan;25(1):21–30. doi: 10.1080/09553007414550021. [DOI] [PubMed] [Google Scholar]
  8. Lawley P. D. Effects of some chemical mutagens and carcinogens on nucleic acids. Prog Nucleic Acid Res Mol Biol. 1966;5:89–131. doi: 10.1016/s0079-6603(08)60232-9. [DOI] [PubMed] [Google Scholar]
  9. Lett J. T., Caldwell I., Dean C. J., Alexander P. Rejoining of x-ray induced breaks in the DNA of leukaemia cells. Nature. 1967 May 20;214(5090):790–792. doi: 10.1038/214790a0. [DOI] [PubMed] [Google Scholar]
  10. Lett J. T., Sun C. The production of strand breaks in mammalian DNA by X-rays: at different stages in the cell cycle. Radiat Res. 1970 Dec;44(3):771–787. [PubMed] [Google Scholar]
  11. Lett J. T., Sun C., Wheeler K. T. Restoration of the DNA structure in x-irradiated eucaryotic cells: in vitro and in vivo. Johns Hopkins Med J Suppl. 1972;(1):147–158. [PubMed] [Google Scholar]
  12. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  13. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  14. Sawada S., Okada S. Effects of BUdR-labelling on radiation-induced DNA breakage and subsequent rejoining in cultured mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Jun;21(6):599–602. doi: 10.1080/09553007214550691. [DOI] [PubMed] [Google Scholar]
  15. Schmidt A., Hotz G. The occurrence of double-strand breaks in coliphage T1-DNA by iodine-125 decay. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Sep;24(3):307–313. doi: 10.1080/09553007314551141. [DOI] [PubMed] [Google Scholar]
  16. Town C. D., Smith K. C., Kaplan H. S. Production and repair of radiochemical damage in Escherichia coli deoxyribonucleic acid; its modification by culture conditions and relation to survival. J Bacteriol. 1971 Jan;105(1):127–135. doi: 10.1128/jb.105.1.127-135.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Town C. D., Smith K. C., Kaplan H. S. The rapair of DNA single-strand breaks in E. coli K-12 x-irradiated in the presence or absence of oxygen; the influence of repair on cell survival. Radiat Res. 1973 Aug;55(2):334–345. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES