Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):4850–4854. doi: 10.1073/pnas.71.12.4850

Paired Moving Charges in Mitochondrial Energy Coupling

David E Green *, Stanley Reible
PMCID: PMC433996  PMID: 4531024

Abstract

A model of mitochondrial energy coupling has been proposed based on the principles of paired charge separation and vectorial paired charge flow. The unique role of the electron transfer chain and ionophores in mediating charge separation is emphasized.

Keywords: paired charge separation, charge-separated state, paired charge flow

Full text

PDF
4850

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beechey R. B., Roberton A. M., Holloway C. T., Knight I. G. The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation. Biochemistry. 1967 Dec;6(12):3867–3879. doi: 10.1021/bi00864a033. [DOI] [PubMed] [Google Scholar]
  2. CHANCE B., HOLLUNGER G. The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem. 1961 May;236:1534–1543. [PubMed] [Google Scholar]
  3. EISENMAN G. Cation selective glass electrodes and their mode of operation. Biophys J. 1962 Mar;2(2 Pt 2):259–323. doi: 10.1016/s0006-3495(62)86959-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Green D. E., Ji S. The electromechanochemical model of mitochondrial structure and function. J Bioenerg. 1972 May;3(1):159–202. doi: 10.1007/BF01516006. [DOI] [PubMed] [Google Scholar]
  5. Green D. E. The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta. 1974 Apr 30;346(1):27–78. doi: 10.1016/0304-4173(74)90011-1. [DOI] [PubMed] [Google Scholar]
  6. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harrison J. E. A proposed hydrogen transfer function for cytochrome c. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2332–2334. doi: 10.1073/pnas.71.6.2332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hemmerich P., Nagelschneider G., Veeger C. Chemistry and molecular biology of flavins and flavoproteins. FEBS Lett. 1970 May 25;8(2):69–83. doi: 10.1016/0014-5793(70)80229-0. [DOI] [PubMed] [Google Scholar]
  9. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  10. Hunter D. R., Capaldi R. A. Respiratory control in cytochrome oxidase. Biochem Biophys Res Commun. 1974 Feb 4;56(3):623–628. doi: 10.1016/0006-291x(74)90650-0. [DOI] [PubMed] [Google Scholar]
  11. Hunter D. R., Komai H., Haworth R. A. Oxidative phosphorylation and respiratory control in lysolecithin treated electron transport particles. Biochem Biophys Res Commun. 1974 Feb 4;56(3):647–653. doi: 10.1016/0006-291x(74)90654-8. [DOI] [PubMed] [Google Scholar]
  12. Jagendorf A. T., Uribe E. ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci U S A. 1966 Jan;55(1):170–177. doi: 10.1073/pnas.55.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kassner R. J. A theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. J Am Chem Soc. 1973 Apr 18;95(8):2674–2677. doi: 10.1021/ja00789a044. [DOI] [PubMed] [Google Scholar]
  14. Kassner R. J. Effects of nonpolar environments on the redox potentials of heme complexes. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2263–2267. doi: 10.1073/pnas.69.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kemeny G. Charged pair current networks in bioenergetics. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3064–3067. doi: 10.1073/pnas.71.8.3064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kemeny G. Energy transfer mechanisms in mitochondria. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3669–3671. doi: 10.1073/pnas.71.9.3669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Komai H., Hunter D. R., Takahashi Y. Effect of lysolecithin treatment on the structure and functions of the mitochondrial inner membrane. Biochem Biophys Res Commun. 1973 Jul 2;53(1):82–89. doi: 10.1016/0006-291x(73)91404-6. [DOI] [PubMed] [Google Scholar]
  18. LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
  19. Roy H., Moudrianakis E. N. Synthesis and discharge of the coupling factor.adenosine diphosphate complex in spinach chloroplast lamellae. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2720–2724. doi: 10.1073/pnas.68.11.2720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vanderkooi G., Senior A. E., Capaldi R. A., Hayashi H. Biological membrane structure. 3. The lattice structure of membranous cytochrome oxidase. Biochim Biophys Acta. 1972 Jul 3;274(1):38–48. doi: 10.1016/0005-2736(72)90278-7. [DOI] [PubMed] [Google Scholar]
  21. Wakabayashi T., Senior A. E., Hatase O., Hayashi H., Green D. E. Conformational changes in membranous preparations of cytochrome oxidase. J Bioenerg. 1972 Aug;3(5):339–344. doi: 10.1007/BF01516073. [DOI] [PubMed] [Google Scholar]
  22. Young J. H., Blondin G. A., Vanderkooi G., Green D. E. Conformational model of active transport. Proc Natl Acad Sci U S A. 1970 Oct;67(2):550–559. doi: 10.1073/pnas.67.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ter Welle H. F., Slater E. C. Uncoupling of respiratory-chain phosphorylation by arsenate. Biochim Biophys Acta. 1967 Jul 5;143(1):1–17. doi: 10.1016/0005-2728(67)90104-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES