Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):4892–4896. doi: 10.1073/pnas.71.12.4892

Reverse Transcriptase: Correlation of Zinc Content with Activity

Bernard J Poiesz 1, Gita Seal 1, Lawrence A Loeb 1
PMCID: PMC434005  PMID: 4140513

Abstract

Evidence is presented that DNA polymerase of avian myeloblastosis virus has an obligatory zinc requirement for activity. Previous studies indicate that the purified polymerase contains zinc in a stoichiometry of about 1 g-atom/mole. We now find that the enzyme-bound zinc is exchangeable with radioactive 65Zn; after isoelectric focusing, the radioactive 65Zn is coincident with polymerase activity. Dialysis of the 65Zn-labeled polymerase against the chelator, 1,10-phenanthroline, results in a progressive loss of radioactive 65Zn and polymerase activity. Thereupon, incubation of the inactivated enzyme with Zn2+ fully restores activity. Thus, the DNA polymerase present in an oncogenic RNA virus, like animal DNA polymerases, can be rigorously classified as a zinc metalloenzyme. DNA polymerase of avian myeloblastosis virus is inactivated by 1,10-phenanthroline at a much faster rate than the bacterial and animal DNA polymerases that have been tested. It may, therefore, be possible to inactivate selectively DNA polymerases from animal tumor viruses by brief exposure to appropriate metal chelators.

Keywords: avian myeloblastosis virus, RNA-directed DNA polymerase, RNA virus

Full text

PDF
4892

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld D. S., Kawaguchi H., Livingston D. M., Vallee B. L. RNA-dependent DNA polymerase (reverse transcriptase) from avian myeloblastosis virus: a zinc metalloenzyme. Proc Natl Acad Sci U S A. 1974 May;71(5):2091–2095. doi: 10.1073/pnas.71.5.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auld D. S., Kawaguchi H., Livingston D. M., Vallee B. L. Reverse transcriptase from avian myeloblastosis virus: a zinc metalloenzyme. Biochem Biophys Res Commun. 1974 Apr 23;57(4):967–972. doi: 10.1016/0006-291x(74)90790-6. [DOI] [PubMed] [Google Scholar]
  3. Battula N., Loeb L. A. The infidelity of avian myeloblastosis virus deoxyribonucleic acid polymerase in polynucleotide replication. J Biol Chem. 1974 Jul 10;249(13):4086–4093. [PubMed] [Google Scholar]
  4. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  5. Chang L. M., Bollum F. J. Doxynucleotide-polymerizing enzymes of calf thymus gland. IV. Inhibition of terminal deoxynucleotidyl transferase by metal ligands. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1041–1048. doi: 10.1073/pnas.65.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chesters J. K. The role of zinc ions in the transformation of lymphocytes by phytohaemagglutinin. Biochem J. 1972 Nov;130(1):133–139. doi: 10.1042/bj1300133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen L. H., Penner P. E., Loeb L. A. Multiple DNA polymerases displayed by isoelectric focusing. Ann N Y Acad Sci. 1973 Jun 15;209:354–362. doi: 10.1111/j.1749-6632.1973.tb47539.x. [DOI] [PubMed] [Google Scholar]
  8. FUJIOKA M., LIEBERMAN I. A ZN++ REQUIREMENT FOR SYNTHESIS OF DEOXYRIBONUCLEIC ACID BY RAT LIVER. J Biol Chem. 1964 Apr;239:1164–1167. [PubMed] [Google Scholar]
  9. Grandgenett D. P., Gerard G. F., Green M. A single subunit from avian myeloblastosis virus with both RNA-directed DNA polymerase and ribonuclease H activity. Proc Natl Acad Sci U S A. 1973 Jan;70(1):230–234. doi: 10.1073/pnas.70.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gulati S. C., Kacian D. L., Spiegelman S. Conditions for using DNA polymerase I as an RNA-dependent DNA polymerase. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1035–1039. doi: 10.1073/pnas.71.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hurwitz J., Leis J. P. RNA-dependent DNA polymerase activity of RNA tumor viruses. I. Directing influence of DNA in the reaction. J Virol. 1972 Jan;9(1):116–129. doi: 10.1128/jvi.9.1.116-129.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  13. Levinson W., Faras A., Woodson B., Jackson J., Bishop J. M. Inhibition of RNA-dependent DNA polymerase of Rous sarcoma virus by thiosemicarbazones and several cations. Proc Natl Acad Sci U S A. 1973 Jan;70(1):164–168. doi: 10.1073/pnas.70.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lewis B. J., Abrell J. W., Smith R. G., Gallo R. C. DNA polymerases in human lymphoblastoid cells infected with simian sarcoma virus. Biochim Biophys Acta. 1974 May 17;349(2):148–160. doi: 10.1016/0005-2787(74)90076-8. [DOI] [PubMed] [Google Scholar]
  15. Loeb L. A., Agarwal S. S., Woodside A. M. Induction of DNA polymerase in human lymphocytes by phytohemagglutinin. Proc Natl Acad Sci U S A. 1968 Nov;61(3):827–834. doi: 10.1073/pnas.61.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loeb L. A. Purification and properties of deoxyribonucleic acid polymerase from nuclei of sea urchin embryos. J Biol Chem. 1969 Apr 10;244(7):1672–1681. [PubMed] [Google Scholar]
  17. Loeb L. A., Tartof K. D., Travaglini E. C. Copying natural RNAs with E. coli DNA polymerase I. Nat New Biol. 1973 Mar 21;242(116):66–69. doi: 10.1038/newbio242066a0. [DOI] [PubMed] [Google Scholar]
  18. Modak M. J., Marcus S. L., Cavalieri L. F. DNA complementary to rabbit globin mRNA made by E. coli polymerase I. Biochem Biophys Res Commun. 1973 Nov 1;55(1):1–7. doi: 10.1016/s0006-291x(73)80051-8. [DOI] [PubMed] [Google Scholar]
  19. Poiesz B. J., Battula N., Loeb L. A. Zinc in reverse transcriptase. Biochem Biophys Res Commun. 1974 Feb 27;56(4):959–964. doi: 10.1016/s0006-291x(74)80282-2. [DOI] [PubMed] [Google Scholar]
  20. Rubin H. Inhibition of DNA synthesis in animal cells by ethylene diamine tetraacetate, and its reversal by zinc. Proc Natl Acad Sci U S A. 1972 Mar;69(3):712–716. doi: 10.1073/pnas.69.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scrutton M. C., Wu C. W., Goldthwait D. A. The presence and possible role of zinc in RNA polymerase obtained from Escherichia coli. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2497–2501. doi: 10.1073/pnas.68.10.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Slater J. P., Mildvan A. S., Loeb L. A. Zinc in DNA polymerases. Biochem Biophys Res Commun. 1971 Jul 2;44(1):37–43. doi: 10.1016/s0006-291x(71)80155-9. [DOI] [PubMed] [Google Scholar]
  23. Springgate C. F., Mildvan A. S., Abramson R., Engle J. L., Loeb L. A. Escherichia coli deoxyribonucleic acid polymerase I, a zinc metalloenzyme. Nuclear quadrupolar relaxation studies of the role of bound zinc. J Biol Chem. 1973 Sep 10;248(17):5987–5993. [PubMed] [Google Scholar]
  24. Swenerton H., Shrader R., Hurley L. S. Zinc-deficient embryos: reduced thymidine incorporation. Science. 1969 Nov 21;166(3908):1014–1015. doi: 10.1126/science.166.3908.1014. [DOI] [PubMed] [Google Scholar]
  25. Valenzuela P., Morris R. W., Faras A., Levinson W., Rutter W. J. Are all nucleotidyl transferases metalloenzymes? Biochem Biophys Res Commun. 1973 Aug 6;53(3):1036–1041. doi: 10.1016/0006-291x(73)90196-4. [DOI] [PubMed] [Google Scholar]
  26. Williams R. O., Loeb L. A. Zinc requirement for DNA replication in stimulated human lymphocytes. J Cell Biol. 1973 Sep;58(3):594–601. doi: 10.1083/jcb.58.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES