Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):4910–4914. doi: 10.1073/pnas.71.12.4910

Kirromycin, an Inhibitor of Protein Biosynthesis that Acts on Elongation Factor Tu

Heinz Wolf 1,*, Gianni Chinali 1, Andrea Parmeggiani 1
PMCID: PMC434009  PMID: 4373734

Abstract

Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu·GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNAPhe is bound enzymatically to ribosomes, presumably because GTP hydrolysis associated with enzymatic binding of Phe-tRNAPhe is not followed by release of EF-Tu·GDP from the ribosome. This antibiotic also enables EF-Tu to catalyze the binding of Phe-tRNAPhe to the poly(U)·ribosome complex even in the absence of GTP. EF-Tu activity in the GTPase reaction is dramatically affected by kirromycin: GTP hydrolysis, which normally requires ribosomes and aminoacyl-tRNA, takes place with the elongation factor alone. This GTPase shows the same Km for GTP as the one dependent on Phe-tRNAPhe and ribosomes in the absence of the antibiotic. Ribosomes and Phe-tRNAPhe, but not tRNAPhe or Ac-Phe-tRNAPhe, stimulate the kirromycin-induced EF-Tu GTPase. These results indicate that the catalytic center of EF-Tu GTPase that is dependent upon aminoacyl-tRNA and ribosomes is primarily located on the elongation factor. In conclusion, kirromycin can substitute for GTP, aminoacyl-tRNA, or ribosomes in various reactions involving EF-Tu, apparently by affecting the allosteric controls between the sites on the EF-Tu molecule interacting with these components.

Keywords: EF-Tu GTPase, peptide bond formation, aminoacyl-tRNA binding, ribosomal complexes

Full text

PDF
4910

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger J., Lehr H., Teitel S., Maehr H., Grunberg E. A new antibiotic X-5108 OF Streptomyces origin. I. Production, isolation and properties. J Antibiot (Tokyo) 1973 Jan;26(1):15–22. doi: 10.7164/antibiotics.26.15. [DOI] [PubMed] [Google Scholar]
  2. Chinali G., Parmeggiani A. Properties of elongation factor G: its interaction with the ribosomal peptidyl-site. Biochem Biophys Res Commun. 1973 Sep 5;54(1):33–39. doi: 10.1016/0006-291x(73)90884-x. [DOI] [PubMed] [Google Scholar]
  3. Chinali G., Parmeggiani A. Properties of the elongation factors from Escherichia coli. Exchange of elongation factor G during elongation of polypeptide chain. Eur J Biochem. 1973 Feb 1;32(3):463–472. doi: 10.1111/j.1432-1033.1973.tb02629.x. [DOI] [PubMed] [Google Scholar]
  4. Eckstein F., Kettler M., Parmeggiani A. Guanylylimidodiphosphate and its interaction with amino acid polymerization factors. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1151–1158. doi: 10.1016/0006-291x(71)90139-2. [DOI] [PubMed] [Google Scholar]
  5. Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
  6. Hachmann J., Miller D. L., Weissbach H. Purification of factor Ts: studies on the formation and stability of nucleotide complexes containing transfer factor Tu. Arch Biochem Biophys. 1971 Dec;147(2):457–466. doi: 10.1016/0003-9861(71)90401-2. [DOI] [PubMed] [Google Scholar]
  7. Hamel E., Koka M., Nakamoto T. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J Biol Chem. 1972 Feb 10;247(3):805–814. [PubMed] [Google Scholar]
  8. Hill W. E., Anderegg J. W., Van Holde K. E. Effects of solvent environment and mode of preparation on the physical properties of ribosomes fron Escherichia coli. J Mol Biol. 1970 Oct 14;53(1):107–121. doi: 10.1016/0022-2836(70)90048-3. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  11. Lucas-Lenard J., Tao P., Haenni A. L. Further studies on bacterial polypeptide elongation. Cold Spring Harb Symp Quant Biol. 1969;34:455–462. doi: 10.1101/sqb.1969.034.01.051. [DOI] [PubMed] [Google Scholar]
  12. Maehr H., Blount J. F., Evans R. H., Jr, Leach M., Westley J. W., Williams T. H., Stempel A., Büchi G. Antibiotic X-5108. II. Structure of goldinono-1,4-lactone-3,7-hemiketal, a degradation product of the antibiotic. Helv Chim Acta. 1972;55(8):3051–3054. doi: 10.1002/hlca.19720550837. [DOI] [PubMed] [Google Scholar]
  13. Maehr H., Leach M., Yarmchuk L., Stempel A. Antibiotic X-5108. V. Structures of antibiotic X-5108 and mocimycin. J Am Chem Soc. 1973 Dec 12;95(25):8449–8450. doi: 10.1021/ja00806a043. [DOI] [PubMed] [Google Scholar]
  14. Miller D. L., Weissbach H. Studies on the purification and properties of factor Tu from E. coli. Arch Biochem Biophys. 1970 Nov;141(1):26–37. doi: 10.1016/0003-9861(70)90102-5. [DOI] [PubMed] [Google Scholar]
  15. Parmeggiani A. Crystalline transfer factors from Escherichia coli. Biochem Biophys Res Commun. 1968 Mar 27;30(6):613–619. doi: 10.1016/0006-291x(68)90556-1. [DOI] [PubMed] [Google Scholar]
  16. Parmeggiani A., Gottschalk E. M. Isolation and some properties of the amino acid polymerization factors from Escherichia coli. Cold Spring Harb Symp Quant Biol. 1969;34:377–384. doi: 10.1101/sqb.1969.034.01.044. [DOI] [PubMed] [Google Scholar]
  17. Ravel J. M., Shorey R. L., Froehner S., Shive W. A study of the enzymic transfer of aminoacyl-RNA to Escherichia coli ribosomes. Arch Biochem Biophys. 1968 May;125(2):514–526. doi: 10.1016/0003-9861(68)90609-7. [DOI] [PubMed] [Google Scholar]
  18. Ravel J. M., Shorey R. L., Garner C. W., Dawkins R. C., Shive W. The role of an aminoacyl-tRNA-GTP-protein complex in polypeptide synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:321–330. doi: 10.1101/sqb.1969.034.01.039. [DOI] [PubMed] [Google Scholar]
  19. Sander G., Marsh R. C., Parmeggiani A. Isolation and characterization of two acidic proteins from the 50S subunit required for GTPase activities of both EF G and EF T. Biochem Biophys Res Commun. 1972 May 26;47(4):866–873. doi: 10.1016/0006-291x(72)90573-6. [DOI] [PubMed] [Google Scholar]
  20. Skoultchi A., Ono Y., Waterson J., Lengyel P. Peptide chain elongation. Cold Spring Harb Symp Quant Biol. 1969;34:437–454. doi: 10.1101/sqb.1969.034.01.050. [DOI] [PubMed] [Google Scholar]
  21. Weissbach H., Brot N., Miller D., Rosman M., Ertel R. Interaction of guanosine triphosphate with E. coli soluble transfer factors. Cold Spring Harb Symp Quant Biol. 1969;34:419–431. doi: 10.1101/sqb.1969.034.01.048. [DOI] [PubMed] [Google Scholar]
  22. Wolf H., Zähner H., Nierhaus K. Kirromycin, an inhibitor of the 30 S ribosomal subunits function. FEBS Lett. 1972 Apr 1;21(3):347–350. doi: 10.1016/0014-5793(72)80199-6. [DOI] [PubMed] [Google Scholar]
  23. Wolf H., Zähner H. Stoffwechselprodukte von Mikroorganismen. 99. Kirromycin. Arch Mikrobiol. 1972;83(2):147–154. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES