Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970

The General Structure of Transfer RNA Molecules

S H Kim *, J L Sussman *, F L Suddath 2, G J Quigley 2, A McPherson 2, A H J Wang 2, N C Seeman 2, Alexander Rich 2
PMCID: PMC434021  PMID: 4612535

Abstract

The three-dimensional structure of yeast phenylalanine tRNA serves as a useful basis for understanding the tertiary structure of all tRNAs. A large number of tRNA sequences have been surveyed and some general conclusions are drawn. There are only a few regions in the molecule in which there are differences in the number of nucleotides; and the structure of yeast phenylalanine tRNA can accommodate these differences by forming or enlarging protuberances on the surface of the basic framework molecule. The nature and distribution of the differences in number of nucleotides are surveyed and possible hydrogen bonding interactions are discussed for a number of tRNA classes. The two most significant features of the molecule are the large number of stacking interactions which are seen to include most of the nucleotides in the molecule and the system of specific hydrogen bonding interactions. It is likely that these stabilizing elements are preserved in all tRNA structures.

Keywords: base stacking, hydrogen bonding, tRNA sequences, tRNA conformation

Full text

PDF
4970

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Hukins D. W., Dover S. D. Optimised parameters for RNA double-helices. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1392–1399. doi: 10.1016/0006-291x(72)90867-4. [DOI] [PubMed] [Google Scholar]
  2. Bergstrom D. E., Leonard N. J. Photoreaction of 4-thiouracil with cytosine. Relation to photoreactions in Escherichia coli transfer ribonucleic acids. Biochemistry. 1972 Jan 4;11(1):1–9. doi: 10.1021/bi00751a001. [DOI] [PubMed] [Google Scholar]
  3. Chaffin L. J., Omilianowski D. R., Bock R. M. Cross-linked transfer RNA functions in all steps of the translation process. Science. 1971 May 21;172(3985):854–855. doi: 10.1126/science.172.3985.854. [DOI] [PubMed] [Google Scholar]
  4. Chang S. E., Ish-Horowicz D. Selective modification of cytidine, uridine, guanosine and pseudouridine residues in Escherichia coli leucine transfer ribonucleic acid. J Mol Biol. 1974 Apr 15;84(3):375–388. doi: 10.1016/0022-2836(74)90446-x. [DOI] [PubMed] [Google Scholar]
  5. Cramer F. Three-dimensional structure of tRNA. Prog Nucleic Acid Res Mol Biol. 1971;11:391–421. doi: 10.1016/s0079-6603(08)60333-5. [DOI] [PubMed] [Google Scholar]
  6. Erdmann V. A., Sprinzl M., Pongs O. The involvement of 5S RNA in the binding of tRNA to ribosomes. Biochem Biophys Res Commun. 1973 Oct 1;54(3):942–948. doi: 10.1016/0006-291x(73)90785-7. [DOI] [PubMed] [Google Scholar]
  7. Fuller W., Hodgson A. Conformation of the anticodon loop intRNA. Nature. 1967 Aug 19;215(5103):817–821. doi: 10.1038/215817a0. [DOI] [PubMed] [Google Scholar]
  8. HOLLEY R. W., APGAR J., EVERETT G. A., MADISON J. T., MARQUISEE M., MERRILL S. H., PENSWICK J. R., ZAMIR A. STRUCTURE OF A RIBONUCLEIC ACID. Science. 1965 Mar 19;147(3664):1462–1465. doi: 10.1126/science.147.3664.1462. [DOI] [PubMed] [Google Scholar]
  9. Holmquist R., Jukes T. H., Pangburn S. Evolution of transfer RNA. J Mol Biol. 1973 Jun 25;78(1):91–116. doi: 10.1016/0022-2836(73)90430-0. [DOI] [PubMed] [Google Scholar]
  10. Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
  11. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  12. Levitt M. Detailed molecular model for transfer ribonucleic acid. Nature. 1969 Nov 22;224(5221):759–763. doi: 10.1038/224759a0. [DOI] [PubMed] [Google Scholar]
  13. RICH A., DAVIES D. R., CRICK F. H., WATSON J. D. The molecular structure of polyadenylic acid. J Mol Biol. 1961 Feb;3:71–86. doi: 10.1016/s0022-2836(61)80009-0. [DOI] [PubMed] [Google Scholar]
  14. RajBhandary U. L., Chang S. H. Studies on polynucleotides. LXXXII. Yeast phenylalanine transfer ribonucleic acid: partial digestion with ribonuclease T-1 and derivation of the total primary structure. J Biol Chem. 1968 Feb 10;243(3):598–608. [PubMed] [Google Scholar]
  15. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  16. Suddath F. L., Quigley G. J., McPherson A., Sneden D., Kim J. J., Kim S. H., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature. 1974 Mar 1;248(5443):20–24. doi: 10.1038/248020a0. [DOI] [PubMed] [Google Scholar]
  17. Yaniv M., Favre A., Barrell B. G. Structure of transfer RNA. Evidence for interaction between two non-adjacent nucleotide residues in tRNA from Escherichia coli. Nature. 1969 Sep 27;223(5213):1331–1333. doi: 10.1038/2231331a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES