Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):5068–5072. doi: 10.1073/pnas.71.12.5068

Electron Diffraction of Wet Phospholipid Bilayers

S W Hui 1, D F Parsons 1, M Cowden 1,*
PMCID: PMC434041  PMID: 4531037

Abstract

The structure of fully hydrated dipalmitoyl lecithin single bilayers, and monolayers deposited on Formvar substrates are studied by electron diffraction, using a hydration stage fitted to an electron microscope. Selective area diffraction patterns of these films indicate that there are domains consisting of mosaics of crystallites of hexagonally packed lipid chains. The size of these domains are typically several μm in diameter. The diffraction intensity agrees with that calculated from the electron scattering factor of the hydrocarbon chains of the lipid molecule.

Keywords: membrane structure, molecular packing, electron microscopy

Full text

PDF
5068

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANERJEE B. R., OSTROFSKY B., RIES H. E., Jr Electron-diffraction studies of fatty-acid monolayers. Nature. 1962 Mar 3;193:873–874. doi: 10.1038/193873a0. [DOI] [PubMed] [Google Scholar]
  2. Dix J. A., Diamond J. M., Kivelson D. Translational diffusion coefficient and partition coefficient of a spin-labeled solute in lecithin bilayer membranes. Proc Natl Acad Sci U S A. 1974 Feb;71(2):474–478. doi: 10.1073/pnas.71.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  4. Hui S. W., Parsons D. F. Electron diffraction of wet biological membranes. Science. 1974 Apr 5;184(4132):77–78. doi: 10.1126/science.184.4132.77. [DOI] [PubMed] [Google Scholar]
  5. Kleemann W., McConnell H. M. Lateral phase separations in Escherichia coli membranes. Biochim Biophys Acta. 1974 Apr 29;345(2):220–230. doi: 10.1016/0005-2736(74)90260-0. [DOI] [PubMed] [Google Scholar]
  6. Levine Y. K., Bailey A. I., Wilkins M. H. Multilayers of phospholipid bimolecular leaflets. Nature. 1968 Nov 9;220(5167):577–578. doi: 10.1038/220577a0. [DOI] [PubMed] [Google Scholar]
  7. Papahadjopoulos D., Jacobson K., Nir S., Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 1973 Jul 6;311(3):330–348. doi: 10.1016/0005-2736(73)90314-3. [DOI] [PubMed] [Google Scholar]
  8. Shimshick E. J., Kleemann W., Hubbell W. L., McConnell H. M. Lateral phase separations in membranes. J Supramol Struct. 1973;1(4):285–294. doi: 10.1002/jss.400010406. [DOI] [PubMed] [Google Scholar]
  9. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  10. Verkleij A. J., de Kruyff B., Ververgaert P. H., Tocanne J. F., van Deenen L. L. The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Biochim Biophys Acta. 1974 Mar 29;339(3):432–437. doi: 10.1016/0005-2736(74)90171-0. [DOI] [PubMed] [Google Scholar]
  11. Ververgaert P. H., Verkleij A. J., Elbers P. F., van Deenen L. L. Analysis of the crystallization process in lecithin liposomes: a freeze-etch study. Biochim Biophys Acta. 1973 Jul 6;311(3):320–329. doi: 10.1016/0005-2736(73)90313-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES