Abstract
The local conformations of proteins and peptides are determined by the amino acid sequence. However, the 20 amino acids encoded by the genome allow the peptide backbone to fold into many conformations, so that even for a small peptide it becomes very difficult to predict the three-dimensional structure. By using empirical conformational energy calculations, a set of amino acids has been designed that would be expected to constrain the conformation of a peptide or a protein to one or two local minima. Most of these amino acids are based on asymmetric substitutions at the C alpha atom of each residue. The H alpha atom of alanine was replaced by various groups: -OCH3, -NCH3, -SCH3, -CONH2, -CONHCH3, -CON(CH3)2, -NH.CO.CH3, -phenyl, or -o-(OCH3)phenyl. Several of these new amino acids are predicted to fold into unique peptide conformations such as right-handed alpha-helical, left-handed alpha-helical, or extended. In an attempt to produce an amino acid that favored the C(eq)7 conformation (torsion angles: phi = -70 degrees and psi = +70 degrees), an extra amide group was added to the C beta atom of the asparagine side chain. Conformationally restricted amino acids of this type could prove useful for developing new peptide pharmaceuticals, catalysts, or polymers.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altmann E., Altmann K. H., Nebel K., Mutter M. Conformational studies on host-guest peptides containing chiral alpha-methyl-alpha-amino acids. Comparison of the helix-inducing potential of alpha-aminoisobutyric acid, (S)-2-ethylalanine and (S)-2-methylserine. Int J Pept Protein Res. 1988 Nov;32(5):344–351. [PubMed] [Google Scholar]
- Anderson A. G., Hermans J. Microfolding: conformational probability map for the alanine dipeptide in water from molecular dynamics simulations. Proteins. 1988;3(4):262–265. doi: 10.1002/prot.340030408. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Reidhaar-Olson J. F., Lim W. A., Sauer R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science. 1990 Mar 16;247(4948):1306–1310. doi: 10.1126/science.2315699. [DOI] [PubMed] [Google Scholar]
- Burgess A. W., Leach S. J. An obligatory alpha-helical amino acid residue. Biopolymers. 1973 Nov;12(11):2599–2605. doi: 10.1002/bip.1973.360121112. [DOI] [PubMed] [Google Scholar]
- Chung H. H., Benson D. R., Schultz P. G. Probing the structure and mechanism of Ras protein with an expanded genetic code. Science. 1993 Feb 5;259(5096):806–809. doi: 10.1126/science.8430333. [DOI] [PubMed] [Google Scholar]
- Ellman J. A., Mendel D., Schultz P. G. Site-specific incorporation of novel backbone structures into proteins. Science. 1992 Jan 10;255(5041):197–200. doi: 10.1126/science.1553546. [DOI] [PubMed] [Google Scholar]
- Gilon C., Halle D., Chorev M., Selinger Z., Byk G. Backbone cyclization: A new method for conferring conformational constraint on peptides. Biopolymers. 1991 May;31(6):745–750. doi: 10.1002/bip.360310619. [DOI] [PubMed] [Google Scholar]
- Iijima H., Dunbar J. B., Jr, Marshall G. R. Calibration of effective van der Waals atomic contact radii for proteins and peptides. Proteins. 1987;2(4):330–339. doi: 10.1002/prot.340020408. [DOI] [PubMed] [Google Scholar]
- Jones D. T., Taylor W. R., Thornton J. M. A new approach to protein fold recognition. Nature. 1992 Jul 2;358(6381):86–89. doi: 10.1038/358086a0. [DOI] [PubMed] [Google Scholar]
- Kleinkauf H., von Döhren H. Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem. 1990 Aug 28;192(1):1–15. doi: 10.1111/j.1432-1033.1990.tb19188.x. [DOI] [PubMed] [Google Scholar]
- Noren C. J., Anthony-Cahill S. J., Griffith M. C., Schultz P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989 Apr 14;244(4901):182–188. doi: 10.1126/science.2649980. [DOI] [PubMed] [Google Scholar]
- Némethy G., Scheraga H. A. Theoretical studies of protein conformation by means of energy computations. FASEB J. 1990 Nov;4(14):3189–3197. doi: 10.1096/fasebj.4.14.2227210. [DOI] [PubMed] [Google Scholar]
- Prasad B. V., Balaram P. The stereochemistry of peptides containing alpha-aminoisobutyric acid. CRC Crit Rev Biochem. 1984;16(4):307–348. doi: 10.3109/10409238409108718. [DOI] [PubMed] [Google Scholar]
- RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]
- Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
- Roterman I. K., Lambert M. H., Gibson K. D., Scheraga H. A. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests. J Biomol Struct Dyn. 1989 Dec;7(3):421–453. doi: 10.1080/07391102.1989.10508503. [DOI] [PubMed] [Google Scholar]
- Toniolo C. Structure of conformationally constrained peptides: from model compounds to bioactive peptides. Biopolymers. 1989 Jan;28(1):247–257. doi: 10.1002/bip.360280125. [DOI] [PubMed] [Google Scholar]
- Zimmerman S. S., Pottle M. S., Némethy G., Scheraga H. A. Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. Macromolecules. 1977 Jan-Feb;10(1):1–9. doi: 10.1021/ma60055a001. [DOI] [PubMed] [Google Scholar]