Abstract
We study a deprotonation reaction by an enzyme with activity dependent on pH. The rate and transport equations are simplified with a number of assumptions, are analyzed according to the presence of different time scales, and are solved numerically to show relaxation oscillation and threshold excitation, for different choices of parameters. The imposition of fluctuations (noise) on the deterministic equations for threshold excitation conditions leads to random occurrence of an excitation and return to steady state at low noise level and to large, random variations in concentrations at high noise level. At intermediate noise levels (of the order of the threshold excitation), however, we find quasi-periodic concentration oscillations. Thus, critical values of external constraints necessary for oscillations are altered by the presence of noise.
Keywords: multiple stationary states, quasi-periodic behavior
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caplan S. R., Naparstek A., Zabusky N. J. Chemical oscillations in membrane. Nature. 1973 Oct 19;245(5425):364–366. doi: 10.1038/245364a0. [DOI] [PubMed] [Google Scholar]
- Edelstein B. B. Biochemical model with multiple steady states and hysteresis. J Theor Biol. 1970 Oct;29(1):57–62. doi: 10.1016/0022-5193(70)90118-9. [DOI] [PubMed] [Google Scholar]
- Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn H. S., Ortoleva P. J., Ross J. Chemical oscillations and multiple steady states due to variable boundary permeability. J Theor Biol. 1973 Oct;41(3):503–521. doi: 10.1016/0022-5193(73)90058-1. [DOI] [PubMed] [Google Scholar]
- Hess B., Boiteux A. Oscillatory phenomena in biochemistry. Annu Rev Biochem. 1971;40:237–258. doi: 10.1146/annurev.bi.40.070171.001321. [DOI] [PubMed] [Google Scholar]
- Karfunkel H. R., Seeling F. F. Reversal of inhibition of enzymes and the model of a spike oscillator. J Theor Biol. 1972 Aug;36(2):237–253. doi: 10.1016/0022-5193(72)90095-1. [DOI] [PubMed] [Google Scholar]
- Katchalsky A., Neumann E. Hysteresis and molecular memory record. Int J Neurosci. 1972 Apr;3(4):175–182. doi: 10.3109/00207457209147020. [DOI] [PubMed] [Google Scholar]
- Lavenda B., Nicolis G., Herschkowitz-Kaufman M. Chemical instabilities and relaxation oscillations. J Theor Biol. 1971 Aug;32(2):283–292. doi: 10.1016/0022-5193(71)90166-4. [DOI] [PubMed] [Google Scholar]
- Naparstek A., Thomas D., Caplan S. R. An experimental enzyme-membrane oscillator. Biochim Biophys Acta. 1973 Nov 16;323(4):643–646. doi: 10.1016/0005-2736(73)90176-4. [DOI] [PubMed] [Google Scholar]
- Ortoleva P., Ross J. A chemical instability mechanism for asymmetric cell differentiation. Biophys Chem. 1973 Dec;1(2):87–96. doi: 10.1016/0301-4622(73)80004-3. [DOI] [PubMed] [Google Scholar]
