Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 29;91(7):2708–2712. doi: 10.1073/pnas.91.7.2708

Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway.

D E Warnock 1, M S Lutz 1, W A Blackburn 1, W W Young Jr 1, J U Baenziger 1
PMCID: PMC43439  PMID: 8146178

Abstract

High-gradient magnetic affinity chromatography (HIMAC) has been used to obtain highly enriched plasma membranes, free of intracellular membrane contaminants, from cultured Chinese hamster ovary (CHO) cells in yields of > or = 80%. Using this procedure we have characterized the transport of glucosylceramide (GlcCer) and the ganglioside GM3 to the plasma membrane. Newly synthesized GlcCer reaches the plasma membrane in 7.2 min, whereas GM3 requires 21.5 min to reach the plasma membrane. Brefeldin A prevents transport of newly synthesized GM3 and sphingomyelin to the plasma membrane but has no effect on the transport of GlcCer. Similarly, incubation of CHO cells at 15 degrees C blocks transport of GM3 and sphingomyelin to the plasma membrane but has no effect on GlcCer movement. We propose that carrier-mediated transport accounts for a major fraction of the plasma membrane GlcCer. Pulse-chase studies with either [3H]glucose or [3H]palmitate indicate that newly synthesized GlcCer which has reached the plasma membrane is not utilized for the synthesis of GM3 but is instead rapidly either degraded or converted into an as yet unidentified product. Our results indicate that in addition to serving as a precursor for higher glycosylation in the Golgi, a major fraction of newly synthesized GlcCer is rapidly transported to the plasma membrane by a non-Golgi pathway and then rapidly turned over.

Full text

PDF
2708

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becich M. J., Baenziger J. U. Ligand-specific isolation of endosomes and lysosomes using superparamagnetic colloidal iron dextran glycoconjugates and high gradient magnetic affinity chromatography. Eur J Cell Biol. 1991 Jun;55(1):71–82. [PubMed] [Google Scholar]
  2. Bielawska A., Linardic C. M., Hannun Y. A. Ceramide-mediated biology. Determination of structural and stereospecific requirements through the use of N-acyl-phenylaminoalcohol analogs. J Biol Chem. 1992 Sep 15;267(26):18493–18497. [PubMed] [Google Scholar]
  3. Briles E. B., Li E., Kornfeld S. Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J Biol Chem. 1977 Feb 10;252(3):1107–1116. [PubMed] [Google Scholar]
  4. Brüning A., Karrenbauer A., Schnabel E., Wieland F. T. Brefeldin A-induced increase of sphingomyelin synthesis. Assay for the action of the antibiotic in mammalian cells. J Biol Chem. 1992 Mar 15;267(8):5052–5055. [PubMed] [Google Scholar]
  5. Coste H., Martel M. B., Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta. 1986 Jun 13;858(1):6–12. doi: 10.1016/0005-2736(86)90285-3. [DOI] [PubMed] [Google Scholar]
  6. Deutscher S. L., Hirschberg C. B. Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes. J Biol Chem. 1986 Jan 5;261(1):96–100. [PubMed] [Google Scholar]
  7. Dressler K. A., Mathias S., Kolesnick R. N. Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science. 1992 Mar 27;255(5052):1715–1718. doi: 10.1126/science.1313189. [DOI] [PubMed] [Google Scholar]
  8. Futerman A. H., Pagano R. E. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J. 1991 Dec 1;280(Pt 2):295–302. doi: 10.1042/bj2800295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Futerman A. H., Stieger B., Hubbard A. L., Pagano R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem. 1990 May 25;265(15):8650–8657. [PubMed] [Google Scholar]
  10. Gahmberg C. G., Hakomori S. I. External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes. J Biol Chem. 1973 Jun 25;248(12):4311–4317. [PubMed] [Google Scholar]
  11. Hatch G. M., Vance D. E. Stimulation of sphingomyelin biosynthesis by brefeldin A and sphingomyelin breakdown by okadaic acid treatment of rat hepatocytes. J Biol Chem. 1992 Jun 25;267(18):12443–12451. [PubMed] [Google Scholar]
  12. Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kallen K. J., Quinn P., Allan D. Effects of brefeldin A on sphingomyelin transport and lipid synthesis in BHK21 cells. Biochem J. 1993 Jan 1;289(Pt 1):307–312. doi: 10.1042/bj2890307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaplan M. R., Simoni R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J Cell Biol. 1985 Aug;101(2):441–445. doi: 10.1083/jcb.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaplan M. R., Simoni R. D. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J Cell Biol. 1985 Aug;101(2):446–453. doi: 10.1083/jcb.101.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karrenbauer A., Jeckel D., Just W., Birk R., Schmidt R. R., Rothman J. E., Wieland F. T. The rate of bulk flow from the Golgi to the plasma membrane. Cell. 1990 Oct 19;63(2):259–267. doi: 10.1016/0092-8674(90)90159-c. [DOI] [PubMed] [Google Scholar]
  17. Kingsley D. M., Kozarsky K. F., Hobbie L., Krieger M. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell. 1986 Mar 14;44(5):749–759. doi: 10.1016/0092-8674(86)90841-x. [DOI] [PubMed] [Google Scholar]
  18. Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klausner R. D. Sorting and traffic in the central vacuolar system. Cell. 1989 Jun 2;57(5):703–706. doi: 10.1016/0092-8674(89)90783-6. [DOI] [PubMed] [Google Scholar]
  20. Kobayashi T., Pagano R. E. Lipid transport during mitosis. Alternative pathways for delivery of newly synthesized lipids to the cell surface. J Biol Chem. 1989 Apr 5;264(10):5966–5973. [PubMed] [Google Scholar]
  21. Lipsky N. G., Pagano R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol. 1985 Jan;100(1):27–34. doi: 10.1083/jcb.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lipsky N. G., Pagano R. E. Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc Natl Acad Sci U S A. 1983 May;80(9):2608–2612. doi: 10.1073/pnas.80.9.2608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Merrill A. H., Jr, Wang E. Biosynthesis of long-chain (sphingoid) bases from serine by LM cells. Evidence for introduction of the 4-trans-double bond after de novo biosynthesis of N-acylsphinganine(s). J Biol Chem. 1986 Mar 15;261(8):3764–3769. [PubMed] [Google Scholar]
  24. Roberts C. J., Birkenmeier T. M., McQuillan J. J., Akiyama S. K., Yamada S. S., Chen W. T., Yamada K. M., McDonald J. A. Transforming growth factor beta stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J Biol Chem. 1988 Apr 5;263(10):4586–4592. [PubMed] [Google Scholar]
  25. Saraste J., Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984 Sep;38(2):535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
  26. Sasaki T. Glycolipid transfer protein and intracellular traffic of glucosylceramide. Experientia. 1990 Jun 15;46(6):611–616. doi: 10.1007/BF01939700. [DOI] [PubMed] [Google Scholar]
  27. Shayman J. A., Deshmukh G. D., Mahdiyoun S., Thomas T. P., Wu D., Barcelon F. S., Radin N. S. Modulation of renal epithelial cell growth by glucosylceramide. Association with protein kinase C, sphingosine, and diacylglycerol. J Biol Chem. 1991 Dec 5;266(34):22968–22974. [PubMed] [Google Scholar]
  28. Sleight R. G., Pagano R. E. Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem. 1983 Aug 10;258(15):9050–9058. [PubMed] [Google Scholar]
  29. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  31. Trinchera M., Fabbri M., Ghidoni R. Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J Biol Chem. 1991 Nov 5;266(31):20907–20912. [PubMed] [Google Scholar]
  32. Trinchera M., Fiorilli A., Ghidoni R. Localization in the Golgi apparatus of rat liver UDP-Gal:glucosylceramide beta 1----4galactosyltransferase. Biochemistry. 1991 Mar 12;30(10):2719–2724. doi: 10.1021/bi00224a021. [DOI] [PubMed] [Google Scholar]
  33. Urbani L., Simoni R. D. Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. J Biol Chem. 1990 Feb 5;265(4):1919–1923. [PubMed] [Google Scholar]
  34. Vance J. E., Aasman E. J., Szarka R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J Biol Chem. 1991 May 5;266(13):8241–8247. [PubMed] [Google Scholar]
  35. Voelker D. R. Lipid transport pathways in mammalian cells. Experientia. 1990 Jun 15;46(6):569–579. doi: 10.1007/BF01939695. [DOI] [PubMed] [Google Scholar]
  36. Warnock D. E., Roberts C., Lutz M. S., Blackburn W. A., Young W. W., Jr, Baenziger J. U. Determination of plasma membrane lipid mass and composition in cultured Chinese hamster ovary cells using high gradient magnetic affinity chromatography. J Biol Chem. 1993 May 15;268(14):10145–10153. [PubMed] [Google Scholar]
  37. Wieland F. T., Gleason M. L., Serafini T. A., Rothman J. E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987 Jul 17;50(2):289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]
  38. Young W. W., Jr, Lutz M. S., Blackburn W. A. Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates. J Biol Chem. 1992 Jun 15;267(17):12011–12015. [PubMed] [Google Scholar]
  39. van Echten G., Iber H., Stotz H., Takatsuki A., Sandhoff K. Uncoupling of ganglioside biosynthesis by Brefeldin A. Eur J Cell Biol. 1990 Feb;51(1):135–139. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES