Abstract
Adrenal glands from early, mid, and late fetuses of rabbit, guinea pig, and rat, and from newborn animals of each species, were incubated for 1-4 h with and without 0.1 nM-1 microM ACTH, alpha- or beta-melanocyte-stimulating hormone (alpha MSH or beta MSH). The effects of the peptides were measured on production of glucocorticoids, and on incorporation of labeled thymidine or leucine into DNA or protein, respectively. The findings were similar in all three species. ACTH stimulated synthesis of glucocorticoids throughout fetal life. Potency increased progressively, as reflected by declining minimal effective dose and rising maximal response. In early and mid fetus alpha MSH and beta MSH caused a modest glucocorticoid steroidogenic effect. ACTH and alpha MSH stimulated DNA and protein synthesis in the early and mid fetal gland. alpha MSH was more potent than ACTH in these respects, minimal effective dose being generally 10 times less and maximal response 25-200% greater. The effects diminished or disappeared in the late fetal and newborn gland. These data indicate that alpha- and beta MSH possess steroidogenic or growth-promoting properties, or both, for the fetal adrenal gland.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRANSOME E. D., Jr, REDDY W. J. Studies of adrenal nucleic acids: the influence of ACTH, unilateral adrenalectomy and growth hormone upon adrenal RNA and DNA in the dog. Endocrinology. 1961 Dec;69:997–1008. doi: 10.1210/endo-69-6-997. [DOI] [PubMed] [Google Scholar]
- Baird A. C., Brisson G., Kan K. W., Duguid W. C., Solomon S. Control of steroid synthesis in human fetal adrenals in monolayer culture. Can J Biochem. 1978 Jun;56(6):577–584. doi: 10.1139/o78-087. [DOI] [PubMed] [Google Scholar]
- Carpenter R. K., Macleod L. D., Reiss M. The effect of adreno-corticotrophic hormone on the respiratory metabolism of the adrenal cortex of the rat. J Physiol. 1946 Dec 6;105(3):231–235. [PMC free article] [PubMed] [Google Scholar]
- Challis J. R., Torosis J. D. Is alpha MSH a trophic hormone to adrenal function in the foetus? Nature. 1977 Oct 27;269(5631):818–819. doi: 10.1038/269818a0. [DOI] [PubMed] [Google Scholar]
- Claycomb W. C. Biochemical aspects of cardiac muscle differentiation. Possible control of deoxyribonucleic acid synthesis and cell differentiation by adrenergic innervation and cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1976 Oct 10;251(19):6082–6089. [PubMed] [Google Scholar]
- ENGEL F. L., LEBOVITZ H. E. PEPTIDE HORMONES, SOME NEW DEVELOPMENTS AND THEIR CLINICAL IMPLICATIONS. Am J Med. 1963 Dec;35:721–726. doi: 10.1016/0002-9343(63)90235-3. [DOI] [PubMed] [Google Scholar]
- Farese R. V. Effects of ACTH and cyclic-AMP in vitro on incorporation of 3H-leucine and 14C-orotic acid into protein and RNA in the presence of an inhibitor of cholesterol side chain cleavage. Endocrinology. 1969 Dec;85(6):1209–1212. doi: 10.1210/endo-85-6-1209. [DOI] [PubMed] [Google Scholar]
- Ferguson J. J., Jr, Morita Y., Mendelsohn L. Incorporation in vitro of precursor into protein and RNA of rat adrenal glands. Endocrinology. 1967 Mar;80(3):521–526. doi: 10.1210/endo-80-3-521. [DOI] [PubMed] [Google Scholar]
- Garren L. D., Gill G. N., Masui H., Walton G. M. On the mechanism of action of ACTH. Recent Prog Horm Res. 1971;27:433–478. doi: 10.1016/b978-0-12-571127-2.50035-3. [DOI] [PubMed] [Google Scholar]
- Hofmann K., Wingender W., Finn F. M. Correlation of adrenocorticotropic activity of ACTH analogs with degree of binding to an adrenal cortical particulate preparation. Proc Natl Acad Sci U S A. 1970 Oct;67(2):829–836. doi: 10.1073/pnas.67.2.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANMAN J. T. The fetal zone of the adrenal gland: its developmental course, comparative anatomy, and possible physiologic functions. Medicine (Baltimore) 1953 Dec;32(4):389–430. doi: 10.1097/00005792-195312000-00001. [DOI] [PubMed] [Google Scholar]
- Lowry P. J., McMartin C., Peters J. Properties of a simplified bioassay for adrenocorticotrophic activity using the steroidogenic response of isolated adrenal cells. J Endocrinol. 1973 Oct;59(1):43–55. doi: 10.1677/joe.0.0590043. [DOI] [PubMed] [Google Scholar]
- Morley C. G., Kingdon H. S. Use of 3 H-thymidine for measurement of DNA synthesis in rat liver--a warning. Anal Biochem. 1972 Jan;45(1):298–305. doi: 10.1016/0003-2697(72)90030-9. [DOI] [PubMed] [Google Scholar]
- Ramachandran J., Suyama A. T. Inhibition of replication of normal adrenocortical cells in culture by adrenocorticotropin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):113–117. doi: 10.1073/pnas.72.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruder H. J., Guy R. L., Lipsett M. B. A radioimmunoassay for cortisol in plasma and urine. J Clin Endocrinol Metab. 1972 Aug;35(2):219–224. doi: 10.1210/jcem-35-2-219. [DOI] [PubMed] [Google Scholar]
- Rudman D., Chawla R. K., Hollins B. M. N,O-Diacetylserine1 alpha-melanocyte-stimulating hormone, a naturally occurring melanotropic peptide. J Biol Chem. 1979 Oct 25;254(20):10102–10108. [PubMed] [Google Scholar]
- Rudman D., DiGirolamo M. Comparative studies on the physiology of adipose tissue. Adv Lipid Res. 1967;5:35–117. [PubMed] [Google Scholar]
- Rudman D., Hollins B. M., Lewis N. C., Scott J. W. Effects of hormones on 3', 5' -cyclic adenosine monophosphate in choroid plexus. Am J Physiol. 1977 Apr;232(4):E353–E357. doi: 10.1152/ajpendo.1977.232.4.E353. [DOI] [PubMed] [Google Scholar]
- SAFFRAN M., BAYLISS M. J. In vitro bioassay of corticotrophin. Endocrinology. 1953 Feb;52(2):140–148. doi: 10.1210/endo-52-2-140. [DOI] [PubMed] [Google Scholar]
- Sanfaçon R., Possmayer F., Harding P. G. Dexamethasone treatment of the guinea pig fetus: its effects on the incorporation of 3H-thymidine into deoxyribonucleic acid. Am J Obstet Gynecol. 1977 Apr 1;127(7):745–752. doi: 10.1016/0002-9378(77)90250-2. [DOI] [PubMed] [Google Scholar]
- Sayers G., Swallow R. L., Giordano N. D. An improved technique for the preparation of isolated rat adrenal cells: a sensitive, accurate and specfic method for the assay of ACTH. Endocrinology. 1971 Apr;88(4):1063–1068. doi: 10.1210/endo-88-4-1063. [DOI] [PubMed] [Google Scholar]
- Silman R. E., Chard T., Lowry P. J., Mullen P. E., Smith I., Young I. M. Human fetal corticotrophin and related pituitary peptides. J Steroid Biochem. 1977 May;8(5):553–557. doi: 10.1016/0022-4731(77)90261-8. [DOI] [PubMed] [Google Scholar]
- Solomon S., Bird C. E., Ling W., Iwamiya M., Young P. C. Formation and metabolism of steroids in the fetus and placenta. Recent Prog Horm Res. 1967;23:297–347. doi: 10.1016/b978-1-4831-9826-2.50010-6. [DOI] [PubMed] [Google Scholar]
- Thody A. J., Penny R. J., Clark D., Taylor C. Development of a radioimmunoassay for alpha-melanocyte-stimulating hormone in the rat. J Endocrinol. 1975 Dec;67(3):385–395. doi: 10.1677/joe.0.0670385. [DOI] [PubMed] [Google Scholar]
- Vagnucci A. H., McDonald R. H., Jr, Drash A. L., Wong A. K. Intradiem changes of plasma aldosterone, cortisol, corticosterone and growth hormone in sodium restriction. J Clin Endocrinol Metab. 1974 May;38(5):761–776. doi: 10.1210/jcem-38-5-761. [DOI] [PubMed] [Google Scholar]
- Villee D. B. Changes in fetal steroid metabolism with age. Clin Pharmacol Ther. 1973 Jul-Aug;14(4):705–713. doi: 10.1002/cpt1973144part2705. [DOI] [PubMed] [Google Scholar]
