Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Apr;65(4):836–840. doi: 10.1172/JCI109735

Biphasic Adrenergic Modulation of β-Adrenergic Receptors in Man

AGONIST-INDUCED EARLY INCREMENT AND LATE DECREMENT IN β-ADRENERGIC RECEPTOR NUMBER

Jack F Tohmeh 1, Philip E Cryer 1
PMCID: PMC434470  PMID: 6102098

Abstract

β-Adrenergic receptors in mononuclear leukocyte preparations were assessed with (−)[3H]-dihydroalprenolol binding studies during the infusion of adrenergic agonists into normal human subjects. During the infusion of isoproterenol into seven subjects, mean (±SE) (−)[3H]dihydroalprenolol binding increased from 25±3 fmol/mg protein to 47±8 fmol/mg protein (P < 0.02) at 0.5 h and 40±3 fmol/mg protein (P < 0.01) at 1 h and decreased to 12±1 fmol/mg protein (P < 0.01) at 4-6 h. During the infusion of epinephrine into three subjects, mean (−)[3H]dihydroalprenolol binding increased from 32±3 to 63±3 fmol/mg protein (P < 0.01) at 0.5-1 h. By Scatchard plot analysis, these changes were attributable to changes in the number of available binding sites rather than changes in binding affinity. The observed changes in the number of (−)[3H]dihydroalprenolol binding sites were not paralleled by changes in total mononuclear cell counts or in T lymphocyte, B lymphocyte, and monocyte distributions. Thus, we conclude that adrenergic agonists modulate the number of available β-adrenergic receptors on circulating mononuclear cells in a biphasic manner, with an early increment and a late decrement, in man. Further, the finding that the increase in pulse rate in response to a “pulse” infusion of isoproterenol was significantly greater after 0.5-1 h of agonist infusion suggests that the observed early agonist-induced increment in β-adrenergic receptor number on circulating cells is paralleled by increments in extra-vascular β-adrenergic receptor sensitivity.

Full text

PDF
836

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach M. A. Differences in Cyclic AMP Changes after Stimulation by Prostaglandins and Isoproterenol in Lymphocyte Subpopulations. J Clin Invest. 1975 May;55(5):1074–1081. doi: 10.1172/JCI108008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  3. Galant S. P., Duriseti L., Underwood S., Insel P. A. Decreased beta-adrenergic receptors on polymorphonuclear leukocytes after adrenergic therapy. N Engl J Med. 1978 Oct 26;299(17):933–936. doi: 10.1056/NEJM197810262991707. [DOI] [PubMed] [Google Scholar]
  4. Galant S. P., Underwood S., Duriseti L., Insel P. A. Characterization of high-affinity beta2-adrenergic receptor binding of (-)-[3H]-dihydroalprenolol to human polymorphonuclear cell particulates. J Lab Clin Med. 1978 Oct;92(4):613–618. [PubMed] [Google Scholar]
  5. Hirata F., Strittmatter W. J., Axelrod J. beta-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci U S A. 1979 Jan;76(1):368–372. doi: 10.1073/pnas.76.1.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kahn C. R. Membrane receptors for hormones and neurotransmitters. J Cell Biol. 1976 Aug;70(2 Pt 1):261–286. doi: 10.1083/jcb.70.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kebabian J. W., Zatz M., Romero J. A., Axelrod J. Rapid changes in rat pineal beta-adrenergic receptor: alterations in l-(3H)alprenolol binding and adenylate cyclase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3735–3739. doi: 10.1073/pnas.72.9.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. MacDermott R. P., Nash G. S., Bertovich M. J., Merkel N. S., Weinrieb I. J. Human B-cell mitogenic responsiveness to lectins: the requirement for T cells. Cell Immunol. 1978 Jun;38(1):198–202. doi: 10.1016/0008-8749(78)90047-3. [DOI] [PubMed] [Google Scholar]
  10. Mendelsohn J., Nordberg J. Adenylate cyclase in thymus-derived and bone marrow-derived lymphocytes from normal donors and patients with chronic lymphocytic leukemia. J Clin Invest. 1979 Jun;63(6):1124–1132. doi: 10.1172/JCI109405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mickey J., Tate R., Lefkowitz R. J. Subsensitivity of adenylate cyclase and decreased beta-adrenergic receptor binding after chronic exposure to (minus)-isoproterenol in vitro. J Biol Chem. 1975 Jul 25;250(14):5727–5729. [PubMed] [Google Scholar]
  12. Mukherjee C., Caron M. G., Lefkowitz R. J. Regulation of adenylate cyclase coupled beta-adrenergic receptors by beta-adrenergic catecholamines. Endocrinology. 1976 Aug;99(2):347–357. doi: 10.1210/endo-99-2-347. [DOI] [PubMed] [Google Scholar]
  13. Posner B. I., Kelly P. A., Friesen H. G. Induction of a lactogenic receptor in rat liver: influence of estrogen and the pituitary. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2407–2410. doi: 10.1073/pnas.71.6.2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roy A. K., Milin B. S., McMinn D. M. Androgen receptor in rat liver: hormonal and developmental regulation of the cytoplasmic receptor and its correlation with the androgen-dependent synthesis of alpha2u-globulin. Biochim Biophys Acta. 1974 Jul 4;354(2):213–232. doi: 10.1016/0304-4165(74)90008-7. [DOI] [PubMed] [Google Scholar]
  15. Ruffolo R. R., Jr, Fowble J. W., Miller D. D., Patil P. N. Binding of [3H]dihydroazapetine to alpha-adrenoreceptor-related proteins from rat vas deferens. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2730–2734. doi: 10.1073/pnas.73.8.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Strittmatter W. J., Hirata F., Axelrod J. Phospholipid methylation unmasks cryptic beta-adrenergic receptors in rat reticulocytes. Science. 1979 Jun 15;204(4398):1205–1207. doi: 10.1126/science.221977. [DOI] [PubMed] [Google Scholar]
  17. Williams L. T., Snyderman R., Lefkowitz R. J. Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding. J Clin Invest. 1976 Jan;57(1):149–155. doi: 10.1172/JCI108254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wolfe B. B., Harden T. K., Molinoff P. B. In vitro study of beta-adrenergic receptors. Annu Rev Pharmacol Toxicol. 1977;17:575–604. doi: 10.1146/annurev.pa.17.040177.003043. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES