Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Apr;65(4):851–860. doi: 10.1172/JCI109737

Reversal of Ethinyl Estradiol-induced Bile Secretory Failure with Triton WR-1339

Francis R Simon 1, Manuel Gonzalez 1, Eileen Sutherland 1, Luigi Accatino 1, Roger A Davis 1
PMCID: PMC434472  PMID: 6244335

Abstract

The effects of Triton WR-1339 and phenobarbital on ethinyl estradiol bile secretory failure were examined to determine the mechanism responsible for decreased bile salt excretion. When administered to ethinyl estradiol-treated rats, Triton WR-1339 restored bile salt independent bile flow and maximum taurocholate transport, whereas phenobarbital corrected bile flow only. Ethinyl estradiol decreased the activities of Na+-K+-ATPase, 5′-nucleotidase, while increasing the activities of Mg++-ATPase and alkaline phosphatase. In contrast to these heterogeneous changes in surface membrane enzyme activities, the number and affinity of [14C]cholic acid carriers were not altered. When administered in vivo or added directly to surface membrane fractions Triton WR-1339 restored the activities of Na+-K+-ATPase and Mg++-ATPase of rats treated with ethinyl estradiol through a process that did not require protein synthesis (unaffected by cycloheximide). Phenobarbital also restored the activity of Na+-K+-ATPase to control levels, but, unlike Triton WR-1339 it did not correct the defect responsible for reduced bile salt secretion. Ethinyl estradiol increased the concentration of cholesterol esters in surface membrane fractions. When administered to ethinyl estradiol-treated rats, Triton WR-1339 restored cholesterol ester concentrations to normal, whereas phenobarbital did not. These combined data suggest that decreased or altered bile salt carriers or reduced sodium driving forces resulting from impaired activity of Na+-K+-ATPase are not responsible for decreased bile salt excretion in ethinyl estradiol-treated rats. It is proposed that the diverse changes in surface membrane function, which are associated with ethinyl estradiol bile secretory failure, may be the result of a generalized alteration in membrane lipid structure.

Full text

PDF
851

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Accatino L., Simon F. R. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest. 1976 Feb;57(2):496–508. doi: 10.1172/JCI108302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adlercreutz H., Tenhunen R. Some aspects of the interaction between natural and synthetic female sex hormones and the liver. Am J Med. 1970 Nov;49:630–648. doi: 10.1016/s0002-9343(70)80130-9. [DOI] [PubMed] [Google Scholar]
  3. Baker A. L., Wood R. A., Moossa A. R., Boyer J. L. Sodium taurocholate modifies the bile acid-independent fraction of canalicular bile flow in the rhesus monkey. J Clin Invest. 1979 Jul;64(1):312–320. doi: 10.1172/JCI109453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balabaud C., Kron K. A., Gumucio J. J. The assessment of the bile salt-nondependent fraction of canalicular bile water in the rat. J Lab Clin Med. 1977 Feb;89(2):393–399. [PubMed] [Google Scholar]
  5. Blitzer B. L., Boyer J. L. Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte. J Clin Invest. 1978 Nov;62(5):1104–1108. doi: 10.1172/JCI109216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer J. L. Canalicular bile formation in the isolated perfused rat liver. Am J Physiol. 1971 Oct;221(4):1156–1163. doi: 10.1152/ajplegacy.1971.221.4.1156. [DOI] [PubMed] [Google Scholar]
  7. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis R. A., Kern F., Jr, Showalter R., Sutherland E., Sinensky M., Simon F. R. Alterations of hepatic Na+,K+-atpase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4130–4134. doi: 10.1073/pnas.75.9.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans W. H., Gurd J. W. Biosynthesis of liver membranes. Incorporation of ( 3 H)leucine into proteins and of ( 14 C)glucosamine into proteins and lipids of liver microsomal and plasma-membrane fractions. Biochem J. 1971 Nov;125(2):615–624. doi: 10.1042/bj1250615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forker E. L. The effect of estrogen on bile formation in the rat. J Clin Invest. 1969 Apr;48(4):654–663. doi: 10.1172/JCI106023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gonzalez M. C., Sutherland E., Simon F. R. Regulation of hepatic transport of bile salt. Effect of protein synthesis inhibition on excretion of bile salts and their binding to liver surface membrane fractions. J Clin Invest. 1979 Apr;63(4):684–694. doi: 10.1172/JCI109351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gumucio J. J., Accatino L., Macho A. M., Contreras A. Effect of phenobarbital on the ethynyl estradiol-induced cholestasis in the rat. Gastroenterology. 1973 Oct;65(4):651–657. [PubMed] [Google Scholar]
  13. Gumucio J. J., Valdivieso V. D. Studies on the mechanism of the ethynylestradiol impairment of bile flow and bile salt excretion in the rat. Gastroenterology. 1971 Sep;61(3):339–344. [PubMed] [Google Scholar]
  14. Heider J. G., Boyett R. L. The picomole determination of free and total cholesterol in cells in culture. J Lipid Res. 1978 May;19(4):514–518. [PubMed] [Google Scholar]
  15. Heikel T. A., Lathe G. H. The effect of oral contraceptive steroids on bile secretion and bilirubin Tm in rats. Br J Pharmacol. 1970 May;38(3):593–601. doi: 10.1111/j.1476-5381.1970.tb10600.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henning R., Kaulen H. D., Stoffel W. Biochemical analysis of the pinocytotic process. 3. Subcellular distribution and metabolic effects of ( 3 H)Triton WR-1339. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1347–1358. doi: 10.1515/bchm2.1971.352.2.1347. [DOI] [PubMed] [Google Scholar]
  17. Hradec J., Dusek Z. All factors required for protein synthesis are retained on heparin bound to Sepharose. Biochem J. 1978 Apr 15;172(1):1–7. doi: 10.1042/bj1720001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ismail-Beigi F., Edelman I. S. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity. J Gen Physiol. 1971 Jun;57(6):710–722. doi: 10.1085/jgp.57.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kimelberg H. K., Papahadjopoulos D. Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase. J Biol Chem. 1974 Feb 25;249(4):1071–1080. [PubMed] [Google Scholar]
  20. Kinne R., Schwartz I. L. Isolated membrane vesicles in the evaluation of the nature, localization, and regulation of renal transport processes. Kidney Int. 1978 Dec;14(6):547–556. doi: 10.1038/ki.1978.163. [DOI] [PubMed] [Google Scholar]
  21. Kreek M. J., Peterson R. E., Sleisenger M. H., Jeffries G. H. Effects of ethinylestradiol-induced cholestasis on bile flow and biliary excretion of estradiol and estradiol glucuronide by the rat. Proc Soc Exp Biol Med. 1969 Jun;131(2):646–650. doi: 10.3181/00379727-131-33944. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Metreau J. M., Dhumeaux D., Berthelot P. Oral contraceptives and the liver. Digestion. 1972;7(5):318–335. doi: 10.1159/000197290. [DOI] [PubMed] [Google Scholar]
  24. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  25. Obrig T. G., Culp W. J., McKeehan W. L., Hardesty B. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem. 1971 Jan 10;246(1):174–181. [PubMed] [Google Scholar]
  26. Plaa G. L., Priestly B. G. Intrahepatic cholestasis induced by drugs and chemicals. Pharmacol Rev. 1976 Sep;28(3):207–273. [PubMed] [Google Scholar]
  27. Reichen J., Paumgartner G. Relationship between bile flow and Na+, K+-adenosinetriphosphatase in liver plasma membranes enriched in bile canaliculi. J Clin Invest. 1977 Aug;60(2):429–434. doi: 10.1172/JCI108792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SHIBKO S., TAPPEL A. L. Acid phosphatase of the lysosomal and soluble fraction of rat liver. Biochim Biophys Acta. 1963 May 7;73:76–86. doi: 10.1016/0006-3002(63)90361-5. [DOI] [PubMed] [Google Scholar]
  29. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  30. STRAUS W. Colorimetric determination of cytochrome c oxidase by formation of a quinoedimonium pigment from dimethyl-p-phenylenediamine. Biochim Biophys Acta. 1956 Jan;19(1):58–65. doi: 10.1016/0006-3002(56)90385-7. [DOI] [PubMed] [Google Scholar]
  31. Simon F. R., Sutherland E., Accatino L. Stimulation of hepatic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital. Its possible role in regulation of bile flow. J Clin Invest. 1977 May;59(5):849–861. doi: 10.1172/JCI108707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simon F. R., Sutherland E. Hepatic alkaline phosphatase isoenzymes: isolation, characterization and differential alteration. Enzyme. 1977;22(2):80–90. doi: 10.1159/000458774. [DOI] [PubMed] [Google Scholar]
  33. Song C. S., Bodansky O. Subcellular localization and properties of 5'-nucleotidase in the rat liver. J Biol Chem. 1967 Feb 25;242(4):694–699. [PubMed] [Google Scholar]
  34. Song C. S., Kappas A. The influence of hormones on hepatic function. Prog Liver Dis. 1970;3:89–109. [PubMed] [Google Scholar]
  35. TALALAY P. Enzymic analysis of steroid hormones. Methods Biochem Anal. 1960;8:119–143. doi: 10.1002/9780470110249.ch3. [DOI] [PubMed] [Google Scholar]
  36. Weihing R. R., Manganiello V. C., Chiu R., Phillips A. H. Purification of hepatic microsomal membranes. Biochemistry. 1972 Aug 1;11(16):3128–3135. doi: 10.1021/bi00766a028. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES