Abstract
Thyroxine (T4) to 3,5,3′-triiodothyronine (T3) conversion was evaluated in vivo in cerebral cortex, cerebellum, and anterior pituitary of male euthyroid Sprague-Dawley rats. Tracer quantities of 125I-T4 and 131I-T3 were injected into controls and iopanoic acid-pretreated rats 3 h before isolation of nuclei from these tissues. Specifically-bound nuclear 131I-T3, denoted T3(T3); 125I-T3, denoted T3(T4); and 125I-T4 were extracted and identified by chromatography. Plasma iodothyronines were similarly quantitated. In control rats, nuclear T3(T3) (percent dose per milligram DNA × 10−4) was 174±31 in cerebral cortex, 50±9 in cerebellum, and 932±158 in pituitary (all values, mean±SEM). Nuclear T3(T4) (percent dose per milligram DNA × 10−4) was 23.3±3.3 in cortex, 3.5±0.6 in cerebellum, and 39.4±6.9 in pituitary. Two-thirds of nuclear T3(T4) derived from local T4 to T3 conversion. Nuclear T3(T4) in all tissues was reduced to less than 15% of its control value by iopanoic acid treatment and all of the residual nuclear T3(T4) could be accounted for by plasma T3(T4). Nuclear T3(T3) binding was not inhibited by iopanoic acid. These results indicate there is rapid local T4 to T3 conversion in rat brain and nuclear binding of the T3 produced. We have previously found that local T3(T4) production is the source of ∼50% of the T3 in rat anterior pituitary. The present observations that the ratio of locally derived nuclear T3(T4) to nuclear T3(T3) is much higher in cerebral cortex (0.1) and cerebellum (0.04) than in anterior pituitary (0.015) suggest that this locally produced T3(T4) is the predominant source of intracellular T3 in these portions of rat brain.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cheron R. G., Kaplan M. M., Larsen P. R. Physiological and pharmacological influences on thyroxine to 3,5,3'-triiodothyronine conversion and nuclear 3,5,3'-triiodothyronine binding in rat anterior pituitary. J Clin Invest. 1979 Nov;64(5):1402–1414. doi: 10.1172/JCI109598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dratman M. B., Crutchfield F. L. Synaptosomal [125I]triiodothyronine after intravenous [125I]thyroxine. Am J Physiol. 1978 Dec;235(6):E638–E647. doi: 10.1152/ajpendo.1978.235.6.E638. [DOI] [PubMed] [Google Scholar]
- Kaplan M. M., Utiger R. D. Iodothyronine metabolism in rat liver homogenates. J Clin Invest. 1978 Feb;61(2):459–471. doi: 10.1172/JCI108957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen P. R., Dick T. E., Markovitz B. P., Kaplan M. M., Gard T. G. Inhibition of intrapituitary thyroxine to 3.5.3'-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats. J Clin Invest. 1979 Jul;64(1):117–128. doi: 10.1172/JCI109430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obregon M. J., Roelfsema F., Morreale de Escobar G., Escobar del Rey F., Querido A. Exchange of triiodothyronine derived from thyroxine with circulating triiodothyronine as studied in the rat. Clin Endocrinol (Oxf) 1979 Mar;10(3):305–315. doi: 10.1111/j.1365-2265.1979.tb02085.x. [DOI] [PubMed] [Google Scholar]
- Schwartz H. L., Oppenheimer J. H. Nuclear triiodothyronine receptor sites in brain: probable identity with hepatic receptors and regional distribution. Endocrinology. 1978 Jul;103(1):267–273. doi: 10.1210/endo-103-1-267. [DOI] [PubMed] [Google Scholar]
- Schwartz H. L., Oppenheimer J. H. Ontogenesis of 3,5,3'-triiodothyronine receptors in neonatal rat brain: dissociation between receptor concentration and stimulation of oxygen consumption by 3,5,3'-triiodothyronine. Endocrinology. 1978 Sep;103(3):943–948. doi: 10.1210/endo-103-3-943. [DOI] [PubMed] [Google Scholar]
- Silva J. E., Dick T. E., Larsen P. R. The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3'-triiodothyronine in pituitary, liver, and kidney of euthyroid rats. Endocrinology. 1978 Oct;103(4):1196–1207. doi: 10.1210/endo-103-4-1196. [DOI] [PubMed] [Google Scholar]
- Silva J. E., Larsen P. R. Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear triiodothyronine receptors and the acute inhibition of thyroid-stimulating hormone release. J Clin Invest. 1978 May;61(5):1247–1259. doi: 10.1172/JCI109041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valcana T., Timiras P. S. Nuclear triiodothyronine receptors in the developing rat brain. Mol Cell Endocrinol. 1978 Jun;11(1):31–41. doi: 10.1016/0303-7207(78)90030-8. [DOI] [PubMed] [Google Scholar]
- Vigouroux E., Clos J., Legrand J. Uptake and metabolism of exogenous and endogenous thyroxine in the brain of young rats. Horm Metab Res. 1979 Mar;11(3):228–232. doi: 10.1055/s-0028-1092714. [DOI] [PubMed] [Google Scholar]
- Zimmerman C. J., Izumi M., Larsen P. R. Isolation of labeled triiodothyronine from serum using affinity chromatography: application to the extimation of the peripheral T4 to T3 conversion in rats. Metabolism. 1978 Mar;27(3):303–313. doi: 10.1016/0026-0495(78)90110-5. [DOI] [PubMed] [Google Scholar]
