Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 21;71(Pt 3):o197–o198. doi: 10.1107/S2056989015003114

Crystal structure of 4,6-di­amino-2-(methyl­sulfan­yl)pyridine-3-carbo­nitrile

Shaaban K Mohamed a,b, Kyle S Knight c, Mehmet Akkurt d, Bahgat R M Hussein e, Mustafa R Albayati f,*
PMCID: PMC4350697  PMID: 25844246

Abstract

The title pyrimidine derivative, C7H8N4S, is essentially planar, with a maximum deviation of 0.029 (2) Å from the mean plane of the non-H atoms. In the crystal, mol­ecules are linked by an inter­molecular bifurcated N—H⋯N hydrogen bond between the cyano N atom and the two amino groups, an N—H⋯N hydrogen bond between the two amino groups and a weak C—H⋯π inter­action, forming a three-dimensional network.

Keywords: crystal structure; 4,6-di­amino-2-(methyl­sulfan­yl)pyridine-3-carbo­nitrile; multifunctional pyridines

Related literature  

For the abundance of pyridines in pharmaceuticals and natural products, see: Zhang et al. (2010). For various applications of pyridine-containing compounds, see: Murata et al. (2003). For the use of polyfunctional pyridines in preparing a variety of heterocyclic compounds, see: Al-Haiza et al. (2003). For the synthesis of the title compound, see: Abu-Shanab (1999). For a similar structure, see: Mohamed et al. (2014).graphic file with name e-71-0o197-scheme1.jpg

Experimental  

Crystal data  

  • C7H8N4S

  • M r = 180.23

  • Orthorhombic, Inline graphic

  • a = 5.0863 (7) Å

  • b = 12.698 (2) Å

  • c = 13.069 (2) Å

  • V = 844.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.40 × 0.09 × 0.05 mm

Data collection  

  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.833, T max = 0.984

  • 9083 measured reflections

  • 1487 independent reflections

  • 1353 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.062

  • S = 1.06

  • 1487 reflections

  • 122 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983)

  • Absolute structure parameter: 0.01 (4)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015003114/is5390sup1.cif

e-71-0o197-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003114/is5390Isup2.hkl

e-71-0o197-Isup2.hkl (82.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003114/is5390Isup3.cml

. DOI: 10.1107/S2056989015003114/is5390fig1.tif

The mol­ecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015003114/is5390fig2.tif

The hydrogen bonding (dashed lines) and packing of the title compound viewed down the a axis.

CCDC reference: 1049335

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2AN3i 0.86(3) 2.43(3) 3.225(4) 155(3)
N2H2BN4ii 0.86(2) 2.26(3) 3.083(4) 161(3)
N3H3BN4iii 0.85(2) 2.31(2) 3.128(3) 161(2)
C7H7A Cg1iv 0.98 2.77 3.552(4) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors would like express their gratitude to the University of Tennessee for providing the X-ray data.

supplementary crystallographic information

S1. Comment

The pyridine ring is a core structure in a number of pharmaceuticals and natural products (Zhang et al., 2010). 2-Amino-3-cyanopyridines have been identified as IKK-β inhibitors (Murata et al., 2003). Besides this, they are important and useful intermediates in preparing variety of heterocyclic compounds (Al-Haiza et al., 2003). Such findings and following to our on-going study on synthesis of bio-active heterocyclic molecules we report in this study the synthesis and crystal structure determination of the title compound.

The molecule of the title compound, Fig. 1, is a tetra-substituted pyrimidine derivative, which is essentially planar with C7–S1–C5–C4, C3–C2–C1–N2, N3–C3–C4–C5 and C6–C4–C3–C2 torsion angles being 180.0 (2), 179.9 (2), 179.0 (2) and 179.7 (2)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in a similar structure (Mohamed et al., 2014). In the crystal structure, intermolecular N—H···N hydrogen bonds and a weak C—H···π interaction feature in the crystal packing (Table 1, Fig. 2).

S2. Experimental

The title compound was prepared according to the reported method (Abu-Shanab, 1999). Crystals of the product were obtained in a good yield (77%) and were suitable for X-ray diffraction (M.p. 426–428 K).

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C) . The H atoms attached to N2 and N3 were found in a difference Fourier map and their positions were refined with bond length and angle restraints of N—H = 0.86 (1) and H···H = 1.40 (3) Å, and with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen bonding (dashed lines) and packing of the title compound viewed down the a axis.

Crystal data

C7H8N4S F(000) = 376
Mr = 180.23 Dx = 1.418 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3713 reflections
a = 5.0863 (7) Å θ = 2.2–25.0°
b = 12.698 (2) Å µ = 0.33 mm1
c = 13.069 (2) Å T = 200 K
V = 844.1 (2) Å3 Needle, yellow
Z = 4 0.40 × 0.09 × 0.05 mm

Data collection

Bruker SMART X2S benchtop diffractometer 1487 independent reflections
Radiation source: XOS X-beam microfocus source 1353 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromator Rint = 0.037
ω scans θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −6→6
Tmin = 0.833, Tmax = 0.984 k = −15→12
9083 measured reflections l = −15→15

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.1689P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.20 e Å3
1487 reflections Δρmin = −0.13 e Å3
122 parameters Absolute structure: Flack (1983)
6 restraints Absolute structure parameter: 0.01 (4)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.05518 (13) 0.80355 (6) 0.72687 (5) 0.0304 (2)
N1 0.8883 (4) 0.62615 (18) 0.63890 (15) 0.0256 (7)
N2 0.7653 (6) 0.4785 (2) 0.55086 (19) 0.0410 (9)
N3 0.3276 (4) 0.5616 (2) 0.86570 (18) 0.0282 (7)
N4 0.6450 (4) 0.7998 (2) 0.94969 (16) 0.0322 (7)
C1 0.7297 (5) 0.5407 (2) 0.6340 (2) 0.0277 (8)
C2 0.5369 (5) 0.5181 (2) 0.70666 (18) 0.0268 (8)
C3 0.5066 (4) 0.5834 (2) 0.79017 (17) 0.0222 (8)
C4 0.6745 (5) 0.67178 (19) 0.79768 (17) 0.0217 (8)
C5 0.8576 (4) 0.6892 (2) 0.71847 (18) 0.0238 (7)
C6 0.6581 (5) 0.7431 (2) 0.88141 (19) 0.0242 (8)
C7 1.2520 (6) 0.7927 (3) 0.6128 (2) 0.0387 (10)
H2 0.42720 0.45820 0.69870 0.0320*
H2A 0.894 (5) 0.487 (3) 0.509 (2) 0.0620*
H2B 0.682 (6) 0.4202 (18) 0.545 (3) 0.0620*
H3A 0.210 (5) 0.5167 (19) 0.849 (2) 0.0420*
H3B 0.286 (6) 0.6117 (17) 0.9060 (19) 0.0420*
H7A 1.32830 0.72190 0.60900 0.0580*
H7B 1.39330 0.84510 0.61490 0.0580*
H7C 1.14140 0.80510 0.55260 0.0580*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0274 (3) 0.0303 (4) 0.0334 (3) −0.0054 (3) 0.0014 (3) −0.0023 (3)
N1 0.0259 (13) 0.0261 (12) 0.0249 (11) 0.0002 (10) 0.0014 (9) −0.0017 (10)
N2 0.0562 (18) 0.0331 (16) 0.0338 (14) −0.0117 (13) 0.0185 (12) −0.0121 (12)
N3 0.0290 (13) 0.0291 (13) 0.0266 (12) −0.0026 (11) 0.0033 (10) −0.0050 (10)
N4 0.0355 (12) 0.0340 (14) 0.0270 (11) −0.0016 (12) −0.0010 (10) −0.0054 (12)
C1 0.0328 (15) 0.0254 (15) 0.0248 (13) 0.0026 (12) 0.0010 (11) −0.0012 (12)
C2 0.0305 (14) 0.0224 (14) 0.0275 (13) −0.0049 (12) 0.0014 (12) −0.0042 (11)
C3 0.0222 (15) 0.0245 (14) 0.0200 (12) 0.0035 (10) −0.0029 (10) 0.0026 (11)
C4 0.0213 (12) 0.0242 (15) 0.0195 (12) 0.0044 (10) −0.0036 (9) −0.0002 (10)
C5 0.0207 (12) 0.0268 (13) 0.0240 (11) 0.0031 (11) −0.0051 (10) 0.0041 (13)
C6 0.0207 (12) 0.0261 (14) 0.0258 (14) 0.0003 (11) −0.0032 (11) 0.0034 (12)
C7 0.0364 (15) 0.045 (2) 0.0347 (15) −0.0091 (15) 0.0057 (12) 0.0038 (15)

Geometric parameters (Å, º)

S1—C5 1.769 (3) N2—H2B 0.86 (2)
S1—C7 1.801 (3) N3—H3A 0.86 (2)
N1—C1 1.354 (3) C3—C4 1.414 (3)
N1—C5 1.322 (3) N3—H3B 0.85 (2)
N2—C1 1.355 (4) C4—C5 1.410 (3)
N3—C3 1.371 (3) C4—C6 1.423 (3)
N4—C6 1.149 (3) C2—H2 0.9500
C1—C2 1.395 (4) C7—H7A 0.9800
C2—C3 1.379 (3) C7—H7B 0.9800
N2—H2A 0.86 (3) C7—H7C 0.9800
C5—S1—C7 101.63 (14) C5—C4—C6 120.2 (2)
C1—N1—C5 116.9 (2) C3—C4—C5 118.2 (2)
N1—C1—N2 115.2 (2) C3—C4—C6 121.6 (2)
N1—C1—C2 123.5 (2) N1—C5—C4 124.1 (2)
N2—C1—C2 121.3 (2) S1—C5—N1 118.61 (17)
C1—C2—C3 119.6 (2) S1—C5—C4 117.28 (18)
C1—N2—H2A 123 (2) N4—C6—C4 179.3 (3)
C1—N2—H2B 121 (3) C1—C2—H2 120.00
H2A—N2—H2B 115 (3) C3—C2—H2 120.00
N3—C3—C2 121.5 (2) S1—C7—H7A 109.00
N3—C3—C4 120.8 (2) S1—C7—H7B 109.00
C2—C3—C4 117.7 (2) S1—C7—H7C 109.00
C3—N3—H3A 114.6 (18) H7A—C7—H7B 109.00
C3—N3—H3B 117.3 (18) H7A—C7—H7C 110.00
H3A—N3—H3B 119 (3) H7B—C7—H7C 110.00
C7—S1—C5—C4 180.0 (2) C1—C2—C3—N3 −177.1 (2)
C7—S1—C5—N1 −0.5 (2) N3—C3—C4—C5 179.0 (2)
C1—N1—C5—C4 0.9 (4) N3—C3—C4—C6 −2.3 (4)
C1—N1—C5—S1 −178.60 (18) C2—C3—C4—C5 1.5 (3)
C5—N1—C1—C2 1.2 (4) C2—C3—C4—C6 −179.7 (2)
C5—N1—C1—N2 179.4 (2) C3—C4—C5—N1 −2.3 (4)
N2—C1—C2—C3 −179.9 (2) C6—C4—C5—S1 −1.6 (3)
N1—C1—C2—C3 −1.8 (4) C6—C4—C5—N1 179.0 (2)
C1—C2—C3—C4 0.4 (3) C3—C4—C5—S1 177.24 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N3i 0.86 (3) 2.43 (3) 3.225 (4) 155 (3)
N2—H2B···N4ii 0.86 (2) 2.26 (3) 3.083 (4) 161 (3)
N3—H3B···N4iii 0.85 (2) 2.31 (2) 3.128 (3) 161 (2)
C7—H7A···Cg1iv 0.98 2.77 3.552 (4) 137

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x−1/2, −y+3/2, −z+2; (iv) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5390).

References

  1. Abu-Shanab, F. A. (1999). J. Chem. Res. (S), 7, 430–431.
  2. Al-Haiza, M. A., Mostafa1, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275–286.
  3. Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Mohamed, S. K., Akkurt, M., Singh, K., Hussein, B. R. M. & Albayati, M. R. (2014). Acta Cryst. E70, o993–o994. [DOI] [PMC free article] [PubMed]
  8. Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett 13, 913–918. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Zhang, X., Li, D., Fan, X., Wang, X., Li, X., Qu, G. & Wang, J. (2010). Mol. Divers 14, 159–167. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015003114/is5390sup1.cif

e-71-0o197-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003114/is5390Isup2.hkl

e-71-0o197-Isup2.hkl (82.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003114/is5390Isup3.cml

. DOI: 10.1107/S2056989015003114/is5390fig1.tif

The mol­ecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015003114/is5390fig2.tif

The hydrogen bonding (dashed lines) and packing of the title compound viewed down the a axis.

CCDC reference: 1049335

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES