Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 28;71(Pt 3):o210–o211. doi: 10.1107/S2056989015003783

Crystal structure of 1-meth­oxy­pyrene

Eric G Morales-Espinoza a, Ernesto Rivera a,*, Reyna Reyes-Martínez b, Simón Hernández-Ortega b, David Morales-Morales b
PMCID: PMC4350705  PMID: 25844253

Abstract

The title compound, C17H12O, crystallized with three independent mol­ecules (A, B and C) in the asymmetric unit. In the crystal, the three independent mol­ecules are linked by π–π inter­actions [centroid–centroid distances = 3.551 (3)–3.977 (2) Å], which lead to the formation of trimers. Between the trimers there are a number of C—H⋯π inter­actions generating a laminar arrangement parallel to (010). The meth­oxy­methyl group in mol­ecule A is disordered over two sets of sites, with an occupancy ratio of 0.56 (9):0.44 (9).

Keywords: crystal structure, pyrene, organic photovoltaics, π–π inter­actions, C—H⋯π inter­actions

Related literature  

For information concerning π-conjugate systems, see: Dössel et al. (2012); Kim et al. (2008). For the synthesis of the title compound, see: Almeida et al. (2009). For details of the structures of pyrene and pyrene derivatives, see: Camerman & Trotter (1965); Gruber et al. (2006, 2010).graphic file with name e-71-0o210-scheme1.jpg

Experimental  

Crystal data  

  • C17H12O

  • M r = 232.27

  • Orthorhombic, Inline graphic

  • a = 16.4163 (15) Å

  • b = 15.8838 (15) Å

  • c = 13.5669 (13) Å

  • V = 3537.6 (6) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.38 × 0.35 × 0.23 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 15159 measured reflections

  • 5670 independent reflections

  • 3664 reflections with I > 2σ(I)

  • R int = 0.103

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.170

  • S = 1.01

  • 5670 reflections

  • 500 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2013 and DIAMOND.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015003783/su5089sup1.cif

e-71-0o210-sup1.cif (481.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003783/su5089Isup2.hkl

e-71-0o210-Isup2.hkl (310.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003783/su5089Isup3.cml

A . DOI: 10.1107/S2056989015003783/su5089fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 35% probability level. The minor component of the disordered methyl group of mol­ecule A is not shown.

b . DOI: 10.1107/S2056989015003783/su5089fig2.tif

A view along the b axis of the crystal packing of the title compound, showing the laminar arrangement as a result of the π–π and C—H⋯π inter­actions (dashed lines; see Table 1 for details).

CCDC reference: 1050924

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C38C41/C50/C49, C7C11/C16, C11C16, and C28C33 rings, respectively.

DHA DH HA D A DHA
C17H17C Cg1i 0.96 2.93 3.78(3) 148
C34H34C Cg2i 0.96 2.99 3.770(7) 140
C19H19Cg3i 0.93 2.99 3.733(6) 138
C44H44Cg4 0.93 2.64 3.529(6) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of this research by CONACYT (grant No. CB2010-154732) and PAPIIT (grant Nos. IN201711-3 and IN213214-3) is gratefully acknowledged. We are also grateful to CONACYT (project 128788) and PAPIIT (project IN100513).

supplementary crystallographic information

S1. Introduction

π-conjugated aromatic compounds are promising materials for use in opto-electronic devices, particularly for organic photovoltaics (OPVs). These compounds exhibit both energy and charge transfer, and their absorption and emission wavelengths can be tuned (Dössel et al., 2012). Pyrene derivatives have been extensively studied due to their excellent optical and electronic properties for example, excimer/monomer emission. Moreover, pyrene shows a long fluorescence lifetime which reaches 400 ns in cyclo­hexane solution (Kim et al., 2008). Due to its susceptibility to aromatic substitution at the 1-, 3-, 6- and 8-positions, pyrene is often functionalized at these positions in order to improve its properties. In this context the title compound, 1-meth­oxy­pyrene, appears in the literature as an important inter­mediate in the synthesis of more elaborate compounds. Thus, in this context we report herein on the synthesis and crystal structure of the title compound.

S2. Experimental

S2.1. Synthesis and crystallization

1-meth­oxy­pyrene was synthesized from 1-pyrenol which is synthesized from 1-pyrenecarboxaldehyde that is commercially available (Aldrich). Pyrenol (0.3 g, 1.37 mmol) was added to a solution of KOH (0.23 g, 4.12 mmol) dissolved in DMSO (7 mL). To this solution, methyl iodide (0.25 g, 1.78 mmol) was added and the resulting reaction mixture was stirred for 1 h at room temperature to produce the desired product (Almeida et al., 2009). Yellow crystals of the title compound were obtained by recrystallization from CHCl3. 1H NMR (300 MHz, CDCl3): d = 8.47 (d, ArH, 1H), 8.09 (m, ArH, 4H), 7.94 (m, ArH, 4H), 7.55 (d, ArH, 1H), 4.17 (s, CH3, 3H) ppm.

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were included in calculated positions and treated as riding: C—H = 0.93 - 0.96 Å with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and = 1.2Ueq(C) for other H atoms. The meth­oxy methyl group (C17) in molecule A is disordered over two sites with an occupancy ratio of 0.56 (9):0.44 (9).

S3. Results and discussion

The asymmetric unit of the title compound consist of three independent molecules (A, B and C), as shown in Fig. 1. The pyrene moiety shows bond lengths and angles similar to those observed for free pyrene (Camerman & Trotter, 1965) and other pyrene derivatives (Gruber et al., 2006, 2010).

In the crystal, the three molecules are linked by π-π inter­actions to give a trimeric motif. The distances between centroids of the aromatic rings have values in the range of 3.551 (3) to 3.977 (2) Å. The most significant are those between molecules A and C [Cg1···Cg9i = 3.755 (3) Å, where Cg1 and Cg9 are the centroids of rings C1—C4/C15/C14 and C35—C38/C49/C48, respectively; symmetry code: (i) x+1/2, -y+1, z] and molecules B and C [Cg6···Cg12ii = 3.551 (3) Å, where Cg6 and Cg12 are the centroids of rings C21—C24/C33/C32 and C45—C50, respectively; symmetry code: (ii) -x+1/2, y, z-1/2]. Between the trimmers there are C—H···π inter­actions generating a laminar arrangement parallel to the ac plane (Table 1 and Fig. 2).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 35% probability level. The minor component of the disordered methyl group of molecule A is not shown.

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title compound, showing the laminar arrangement as a result of the π–π and C—H···π interactions (dashed lines; see Table 1 for details).

Crystal data

C17H12O Dx = 1.308 Mg m3
Mr = 232.27 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 8039 reflections
a = 16.4163 (15) Å θ = 2.3–25.4°
b = 15.8838 (15) Å µ = 0.08 mm1
c = 13.5669 (13) Å T = 298 K
V = 3537.6 (6) Å3 Prism, colourless
Z = 12 0.38 × 0.35 × 0.23 mm
F(000) = 1464

Data collection

Bruker APEXII CCD diffractometer Rint = 0.103
φ and ω scans θmax = 25.4°, θmin = 1.3°
15159 measured reflections h = −19→16
5670 independent reflections k = −19→17
3664 reflections with I > 2σ(I) l = −16→13

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0923P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.170 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.19 e Å3
5670 reflections Δρmin = −0.17 e Å3
500 parameters Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 restraints Extinction coefficient: 0.0054 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2494 (4) 0.3042 (4) 0.8372 (4) 0.0827 (17)
O1 0.2510 (3) 0.3889 (3) 0.8159 (4) 0.1116 (15)
C17 0.305 (2) 0.433 (3) 0.749 (2) 0.104 (7) 0.56 (9)
H17A 0.2922 0.4922 0.7495 0.155* 0.56 (9)
H17B 0.2979 0.4116 0.6832 0.155* 0.56 (9)
H17C 0.3604 0.4252 0.7691 0.155* 0.56 (9)
C17A 0.316 (2) 0.400 (4) 0.743 (3) 0.112 (8) 0.44 (9)
H17D 0.3209 0.4580 0.7256 0.168* 0.44 (9)
H17E 0.3035 0.3675 0.6847 0.168* 0.44 (9)
H17F 0.3669 0.3802 0.7699 0.168* 0.44 (9)
C2 0.3000 (4) 0.2432 (6) 0.7968 (5) 0.101 (2)
H2 0.3398 0.2589 0.7516 0.121*
C3 0.2923 (4) 0.1605 (5) 0.8224 (5) 0.096 (2)
H3 0.3259 0.1206 0.7930 0.115*
C4 0.2357 (3) 0.1354 (4) 0.8909 (4) 0.0745 (15)
C5 0.2263 (4) 0.0496 (4) 0.9180 (6) 0.093 (2)
H5 0.2584 0.0087 0.8880 0.111*
C6 0.1715 (4) 0.0267 (4) 0.9865 (5) 0.0872 (18)
H6 0.1670 −0.0299 1.0032 0.105*
C7 0.1209 (3) 0.0855 (4) 1.0339 (4) 0.0716 (15)
C8 0.0652 (4) 0.0625 (4) 1.1054 (5) 0.0907 (19)
H8 0.0611 0.0062 1.1237 0.109*
C9 0.0168 (4) 0.1201 (5) 1.1492 (5) 0.102 (2)
H9 −0.0197 0.1030 1.1977 0.123*
C10 0.0206 (3) 0.2037 (5) 1.1234 (4) 0.0937 (19)
H10 −0.0133 0.2425 1.1543 0.112*
C11 0.0753 (3) 0.2306 (4) 1.0504 (4) 0.0681 (14)
C12 0.0818 (4) 0.3160 (4) 1.0210 (4) 0.0802 (16)
H12 0.0473 0.3557 1.0493 0.096*
C13 0.1371 (4) 0.3414 (4) 0.9526 (4) 0.0759 (16)
H13 0.1401 0.3978 0.9346 0.091*
C14 0.1909 (3) 0.2813 (4) 0.9081 (4) 0.0689 (14)
C15 0.1841 (3) 0.1954 (3) 0.9347 (4) 0.0603 (13)
C16 0.1270 (3) 0.1717 (3) 1.0065 (3) 0.0611 (13)
O2 0.3921 (2) 0.9290 (2) 0.8083 (3) 0.0832 (11)
C18 0.4051 (3) 0.8500 (3) 0.7719 (4) 0.0615 (13)
C19 0.4681 (3) 0.7987 (4) 0.8002 (4) 0.0679 (15)
H19 0.5064 0.8178 0.8456 0.081*
C20 0.4747 (3) 0.7192 (3) 0.7615 (4) 0.0658 (14)
H20 0.5178 0.6853 0.7817 0.079*
C21 0.4204 (3) 0.6878 (3) 0.6945 (3) 0.0544 (11)
C22 0.4248 (3) 0.6049 (3) 0.6535 (4) 0.0657 (13)
H22 0.4659 0.5688 0.6743 0.079*
C23 0.3714 (3) 0.5778 (3) 0.5861 (4) 0.0671 (14)
H23 0.3763 0.5234 0.5615 0.080*
C24 0.3072 (3) 0.6302 (3) 0.5510 (4) 0.0567 (12)
C25 0.2525 (4) 0.6041 (3) 0.4791 (4) 0.0705 (14)
H25 0.2570 0.5504 0.4523 0.085*
C26 0.1920 (4) 0.6570 (4) 0.4474 (4) 0.0802 (17)
H26 0.1559 0.6387 0.3991 0.096*
C27 0.1837 (3) 0.7364 (4) 0.4857 (4) 0.0717 (14)
H27 0.1424 0.7714 0.4628 0.086*
C28 0.2367 (3) 0.7654 (3) 0.5585 (3) 0.0548 (11)
C29 0.2295 (3) 0.8470 (3) 0.6006 (4) 0.0625 (13)
H29 0.1879 0.8823 0.5793 0.075*
C30 0.2814 (3) 0.8747 (3) 0.6706 (4) 0.0612 (12)
H30 0.2738 0.9276 0.6985 0.073*
C31 0.3481 (3) 0.8234 (3) 0.7022 (3) 0.0493 (11)
C32 0.3559 (3) 0.7414 (3) 0.6626 (3) 0.0468 (10)
C33 0.3002 (3) 0.7124 (3) 0.5909 (3) 0.0469 (11)
C34 0.4481 (4) 0.9611 (4) 0.8794 (5) 0.104 (2)
H34A 0.4307 1.0158 0.9006 0.156*
H34B 0.5013 0.9651 0.8504 0.156*
H34C 0.4501 0.9238 0.9350 0.156*
O3 −0.0805 (3) 0.8861 (3) 1.0803 (3) 0.0949 (13)
C35 −0.0829 (3) 0.8032 (3) 1.0554 (4) 0.0718 (15)
C36 −0.1395 (3) 0.7484 (4) 1.0944 (5) 0.0843 (17)
H36 −0.1787 0.7674 1.1387 0.101*
C37 −0.1370 (3) 0.6642 (4) 1.0665 (5) 0.0856 (18)
H37 −0.1742 0.6270 1.0944 0.103*
C38 −0.0814 (3) 0.6333 (4) 0.9990 (4) 0.0684 (14)
C39 −0.0762 (3) 0.5470 (4) 0.9699 (5) 0.0816 (17)
H39 −0.1114 0.5083 0.9986 0.098*
C40 −0.0228 (4) 0.5201 (4) 0.9033 (5) 0.0830 (17)
H40 −0.0220 0.4634 0.8863 0.100*
C41 0.0339 (3) 0.5768 (4) 0.8569 (4) 0.0691 (15)
C42 0.0902 (4) 0.5515 (4) 0.7864 (4) 0.0825 (16)
H42 0.0914 0.4958 0.7655 0.099*
C43 0.1446 (4) 0.6093 (5) 0.7471 (5) 0.0878 (18)
H43 0.1813 0.5920 0.6990 0.105*
C44 0.1451 (3) 0.6915 (4) 0.7781 (4) 0.0781 (16)
H44 0.1829 0.7289 0.7517 0.094*
C45 0.0903 (3) 0.7196 (3) 0.8481 (4) 0.0610 (13)
C46 0.0894 (3) 0.8047 (3) 0.8818 (4) 0.0716 (15)
H46 0.1278 0.8422 0.8573 0.086*
C47 0.0350 (3) 0.8320 (3) 0.9476 (4) 0.0702 (15)
H47 0.0362 0.8879 0.9678 0.084*
C48 −0.0247 (3) 0.7770 (3) 0.9872 (4) 0.0607 (13)
C49 −0.0249 (3) 0.6913 (3) 0.9580 (3) 0.0594 (13)
C50 0.0328 (3) 0.6629 (3) 0.8874 (3) 0.0564 (12)
C51 −0.1360 (4) 0.9177 (4) 1.1498 (6) 0.113 (2)
H51A −0.1230 0.9754 1.1642 0.170*
H51B −0.1327 0.8850 1.2092 0.170*
H51C −0.1902 0.9144 1.1236 0.170*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.070 (4) 0.115 (5) 0.062 (4) −0.023 (4) −0.007 (3) 0.007 (3)
O1 0.103 (3) 0.135 (4) 0.097 (3) −0.037 (3) 0.001 (3) 0.029 (3)
C17 0.095 (11) 0.128 (16) 0.088 (8) −0.044 (11) −0.007 (7) 0.025 (11)
C17A 0.115 (13) 0.13 (2) 0.094 (11) −0.044 (14) 0.002 (7) 0.047 (14)
C2 0.055 (4) 0.185 (8) 0.063 (4) −0.001 (4) 0.007 (3) −0.011 (5)
C3 0.077 (4) 0.134 (6) 0.078 (4) 0.017 (4) 0.001 (4) −0.013 (4)
C4 0.055 (3) 0.102 (5) 0.066 (3) 0.011 (3) −0.009 (3) −0.016 (3)
C5 0.077 (4) 0.098 (5) 0.103 (5) 0.030 (4) −0.019 (4) −0.024 (4)
C6 0.085 (4) 0.077 (4) 0.099 (5) 0.018 (3) −0.020 (4) 0.004 (4)
C7 0.065 (3) 0.086 (4) 0.064 (3) 0.000 (3) −0.023 (3) 0.008 (3)
C8 0.091 (5) 0.106 (5) 0.075 (4) −0.006 (4) −0.010 (4) 0.016 (4)
C9 0.098 (5) 0.133 (6) 0.076 (5) −0.037 (5) −0.001 (4) 0.027 (5)
C10 0.077 (4) 0.141 (6) 0.063 (4) 0.003 (4) 0.011 (3) −0.014 (4)
C11 0.064 (3) 0.089 (4) 0.052 (3) −0.004 (3) −0.001 (3) −0.008 (3)
C12 0.078 (4) 0.093 (5) 0.070 (4) 0.010 (3) 0.010 (3) −0.019 (3)
C13 0.087 (4) 0.071 (4) 0.069 (4) 0.001 (3) −0.013 (3) −0.010 (3)
C14 0.058 (3) 0.097 (4) 0.051 (3) −0.004 (3) −0.006 (2) −0.010 (3)
C15 0.052 (3) 0.076 (4) 0.052 (3) 0.006 (2) −0.011 (2) −0.005 (3)
C16 0.052 (3) 0.081 (4) 0.050 (3) 0.001 (3) −0.012 (2) −0.003 (3)
O2 0.084 (3) 0.078 (3) 0.087 (3) −0.012 (2) −0.023 (2) −0.009 (2)
C18 0.063 (3) 0.067 (3) 0.054 (3) −0.012 (3) −0.003 (2) 0.002 (2)
C19 0.057 (3) 0.093 (4) 0.054 (3) −0.017 (3) −0.014 (2) 0.015 (3)
C20 0.052 (3) 0.080 (4) 0.065 (3) 0.004 (3) −0.005 (3) 0.021 (3)
C21 0.049 (3) 0.065 (3) 0.049 (3) 0.001 (2) 0.005 (2) 0.020 (2)
C22 0.067 (3) 0.066 (3) 0.064 (3) 0.011 (3) 0.010 (3) 0.020 (3)
C23 0.079 (3) 0.055 (3) 0.067 (3) 0.002 (3) 0.021 (3) 0.006 (3)
C24 0.060 (3) 0.060 (3) 0.050 (3) −0.012 (2) 0.015 (2) 0.008 (2)
C25 0.079 (4) 0.070 (4) 0.062 (3) −0.022 (3) 0.011 (3) −0.008 (3)
C26 0.078 (4) 0.100 (5) 0.063 (3) −0.030 (4) −0.012 (3) −0.002 (3)
C27 0.066 (3) 0.083 (4) 0.066 (3) −0.013 (3) −0.013 (3) 0.012 (3)
C28 0.052 (3) 0.059 (3) 0.054 (3) −0.008 (2) −0.007 (2) 0.015 (2)
C29 0.060 (3) 0.053 (3) 0.074 (3) 0.002 (2) −0.014 (3) 0.013 (2)
C30 0.067 (3) 0.046 (3) 0.070 (3) 0.000 (2) −0.006 (3) 0.009 (2)
C31 0.048 (2) 0.056 (3) 0.044 (2) −0.005 (2) 0.000 (2) 0.010 (2)
C32 0.049 (2) 0.049 (3) 0.042 (2) −0.007 (2) 0.005 (2) 0.015 (2)
C33 0.053 (3) 0.048 (3) 0.039 (2) −0.012 (2) 0.002 (2) 0.010 (2)
C34 0.108 (5) 0.106 (5) 0.098 (5) −0.026 (4) −0.025 (4) −0.025 (4)
O3 0.095 (3) 0.089 (3) 0.101 (3) 0.021 (2) 0.016 (3) 0.015 (2)
C35 0.067 (3) 0.077 (4) 0.071 (4) 0.008 (3) −0.005 (3) 0.024 (3)
C36 0.062 (3) 0.117 (5) 0.074 (4) 0.013 (3) 0.007 (3) 0.012 (4)
C37 0.056 (3) 0.116 (5) 0.085 (4) −0.020 (3) 0.001 (3) 0.019 (4)
C38 0.048 (3) 0.092 (4) 0.065 (3) −0.014 (3) −0.004 (3) 0.015 (3)
C39 0.071 (4) 0.087 (4) 0.087 (4) −0.033 (3) −0.008 (3) 0.006 (3)
C40 0.078 (4) 0.085 (4) 0.086 (4) −0.024 (3) −0.009 (3) −0.001 (3)
C41 0.059 (3) 0.086 (4) 0.062 (3) −0.013 (3) −0.014 (3) 0.009 (3)
C42 0.081 (4) 0.099 (4) 0.067 (4) −0.007 (3) −0.010 (3) −0.008 (3)
C43 0.076 (4) 0.122 (6) 0.065 (4) −0.003 (4) 0.006 (3) 0.011 (4)
C44 0.069 (4) 0.100 (5) 0.066 (4) −0.006 (3) 0.003 (3) 0.025 (3)
C45 0.056 (3) 0.075 (4) 0.052 (3) 0.000 (3) −0.004 (2) 0.026 (3)
C46 0.063 (3) 0.072 (4) 0.080 (4) −0.004 (3) −0.001 (3) 0.035 (3)
C47 0.071 (4) 0.062 (3) 0.078 (4) 0.005 (3) −0.001 (3) 0.032 (3)
C48 0.051 (3) 0.074 (4) 0.056 (3) 0.004 (2) −0.007 (2) 0.022 (3)
C49 0.046 (3) 0.076 (4) 0.056 (3) −0.007 (2) −0.010 (2) 0.021 (2)
C50 0.048 (3) 0.073 (3) 0.049 (3) −0.003 (2) −0.014 (2) 0.015 (2)
C51 0.109 (5) 0.120 (5) 0.111 (5) 0.039 (4) 0.014 (5) 0.000 (5)

Geometric parameters (Å, º)

C1—O1 1.376 (7) C24—C33 1.418 (6)
C1—C2 1.390 (9) C25—C26 1.371 (8)
C1—C14 1.407 (8) C25—H25 0.9300
O1—C17 1.452 (14) C26—C27 1.372 (8)
O1—C17A 1.470 (18) C26—H26 0.9300
C17—H17A 0.9600 C27—C28 1.394 (7)
C17—H17B 0.9600 C27—H27 0.9300
C17—H17C 0.9600 C28—C33 1.410 (6)
C17A—H17D 0.9600 C28—C29 1.421 (6)
C17A—H17E 0.9600 C29—C30 1.350 (7)
C17A—H17F 0.9600 C29—H29 0.9300
C2—C3 1.364 (9) C30—C31 1.432 (6)
C2—H2 0.9300 C30—H30 0.9300
C3—C4 1.374 (8) C31—C32 1.414 (6)
C3—H3 0.9300 C32—C33 1.412 (6)
C4—C15 1.406 (7) C34—H34A 0.9600
C4—C5 1.421 (8) C34—H34B 0.9600
C5—C6 1.343 (9) C34—H34C 0.9600
C5—H5 0.9300 O3—C35 1.360 (6)
C6—C7 1.406 (8) O3—C51 1.405 (8)
C6—H6 0.9300 C35—C36 1.379 (8)
C7—C8 1.382 (8) C35—C48 1.394 (7)
C7—C16 1.423 (7) C36—C37 1.391 (8)
C8—C9 1.351 (9) C36—H36 0.9300
C8—H8 0.9300 C37—C38 1.382 (8)
C9—C10 1.375 (9) C37—H37 0.9300
C9—H9 0.9300 C38—C49 1.421 (7)
C10—C11 1.403 (8) C38—C39 1.428 (8)
C10—H10 0.9300 C39—C40 1.330 (8)
C11—C16 1.396 (7) C39—H39 0.9300
C11—C12 1.418 (8) C40—C41 1.439 (8)
C12—C13 1.360 (8) C40—H40 0.9300
C12—H12 0.9300 C41—C42 1.390 (7)
C13—C14 1.434 (7) C41—C50 1.429 (7)
C13—H13 0.9300 C42—C43 1.386 (8)
C14—C15 1.415 (7) C42—H42 0.9300
C15—C16 1.403 (7) C43—C44 1.373 (8)
O2—C18 1.365 (5) C43—H43 0.9300
O2—C34 1.427 (6) C44—C45 1.381 (7)
C18—C19 1.373 (7) C44—H44 0.9300
C18—C31 1.395 (6) C45—C50 1.409 (6)
C19—C20 1.372 (7) C45—C46 1.428 (7)
C19—H19 0.9300 C46—C47 1.335 (8)
C20—C21 1.368 (7) C46—H46 0.9300
C20—H20 0.9300 C47—C48 1.418 (7)
C21—C32 1.427 (6) C47—H47 0.9300
C21—C22 1.431 (7) C48—C49 1.418 (7)
C22—C23 1.338 (7) C49—C50 1.421 (7)
C22—H22 0.9300 C51—H51A 0.9600
C23—C24 1.425 (7) C51—H51B 0.9600
C23—H23 0.9300 C51—H51C 0.9600
C24—C25 1.389 (7)
O1—C1—C2 126.0 (6) C24—C25—H25 119.8
O1—C1—C14 114.2 (6) C25—C26—C27 121.1 (5)
C2—C1—C14 119.8 (6) C25—C26—H26 119.4
C1—O1—C17 128 (2) C27—C26—H26 119.4
C1—O1—C17A 106 (3) C26—C27—C28 120.7 (5)
O1—C17—H17A 109.5 C26—C27—H27 119.7
O1—C17—H17B 109.5 C28—C27—H27 119.7
H17A—C17—H17B 109.5 C27—C28—C33 119.0 (5)
O1—C17—H17C 109.5 C27—C28—C29 122.3 (5)
H17A—C17—H17C 109.5 C33—C28—C29 118.7 (4)
H17B—C17—H17C 109.5 C30—C29—C28 121.9 (4)
O1—C17A—H17D 109.5 C30—C29—H29 119.0
O1—C17A—H17E 109.5 C28—C29—H29 119.0
H17D—C17A—H17E 109.5 C29—C30—C31 120.5 (4)
O1—C17A—H17F 109.5 C29—C30—H30 119.8
H17D—C17A—H17F 109.5 C31—C30—H30 119.8
H17E—C17A—H17F 109.5 C18—C31—C32 118.5 (4)
C3—C2—C1 121.0 (6) C18—C31—C30 122.8 (4)
C3—C2—H2 119.5 C32—C31—C30 118.6 (4)
C1—C2—H2 119.5 C33—C32—C31 120.3 (4)
C2—C3—C4 121.0 (6) C33—C32—C21 119.6 (4)
C2—C3—H3 119.5 C31—C32—C21 120.1 (4)
C4—C3—H3 119.5 C28—C33—C32 119.9 (4)
C3—C4—C15 119.8 (6) C28—C33—C24 119.4 (4)
C3—C4—C5 121.8 (6) C32—C33—C24 120.8 (4)
C15—C4—C5 118.4 (6) O2—C34—H34A 109.5
C6—C5—C4 120.8 (6) O2—C34—H34B 109.5
C6—C5—H5 119.6 H34A—C34—H34B 109.5
C4—C5—H5 119.6 O2—C34—H34C 109.5
C5—C6—C7 122.2 (6) H34A—C34—H34C 109.5
C5—C6—H6 118.9 H34B—C34—H34C 109.5
C7—C6—H6 118.9 C35—O3—C51 119.6 (5)
C8—C7—C6 122.4 (6) O3—C35—C36 122.4 (6)
C8—C7—C16 119.0 (6) O3—C35—C48 115.7 (5)
C6—C7—C16 118.6 (6) C36—C35—C48 121.9 (6)
C9—C8—C7 121.3 (6) C35—C36—C37 118.9 (6)
C9—C8—H8 119.3 C35—C36—H36 120.6
C7—C8—H8 119.3 C37—C36—H36 120.6
C8—C9—C10 121.0 (6) C38—C37—C36 122.8 (5)
C8—C9—H9 119.5 C38—C37—H37 118.6
C10—C9—H9 119.5 C36—C37—H37 118.6
C9—C10—C11 120.2 (6) C37—C38—C49 117.4 (5)
C9—C10—H10 119.9 C37—C38—C39 124.2 (5)
C11—C10—H10 119.9 C49—C38—C39 118.4 (5)
C16—C11—C10 119.1 (6) C40—C39—C38 122.4 (5)
C16—C11—C12 118.3 (5) C40—C39—H39 118.8
C10—C11—C12 122.5 (6) C38—C39—H39 118.8
C13—C12—C11 121.7 (5) C39—C40—C41 121.5 (6)
C13—C12—H12 119.1 C39—C40—H40 119.3
C11—C12—H12 119.1 C41—C40—H40 119.3
C12—C13—C14 120.0 (5) C42—C41—C50 119.0 (5)
C12—C13—H13 120.0 C42—C41—C40 123.3 (6)
C14—C13—H13 120.0 C50—C41—C40 117.7 (5)
C1—C14—C15 118.5 (5) C43—C42—C41 120.1 (6)
C1—C14—C13 122.4 (6) C43—C42—H42 120.0
C15—C14—C13 119.1 (5) C41—C42—H42 120.0
C16—C15—C4 120.9 (5) C44—C43—C42 121.1 (6)
C16—C15—C14 119.2 (5) C44—C43—H43 119.5
C4—C15—C14 119.8 (5) C42—C43—H43 119.5
C11—C16—C15 121.5 (5) C43—C44—C45 120.9 (5)
C11—C16—C7 119.4 (5) C43—C44—H44 119.6
C15—C16—C7 119.1 (5) C45—C44—H44 119.6
C18—O2—C34 118.1 (4) C44—C45—C50 119.4 (5)
O2—C18—C19 124.2 (5) C44—C45—C46 122.2 (5)
O2—C18—C31 114.8 (4) C50—C45—C46 118.4 (5)
C19—C18—C31 121.0 (5) C47—C46—C45 122.0 (5)
C20—C19—C18 119.9 (5) C47—C46—H46 119.0
C20—C19—H19 120.0 C45—C46—H46 119.0
C18—C19—H19 120.0 C46—C47—C48 121.0 (5)
C21—C20—C19 122.6 (5) C46—C47—H47 119.5
C21—C20—H20 118.7 C48—C47—H47 119.5
C19—C20—H20 118.7 C35—C48—C49 118.1 (5)
C20—C21—C32 117.9 (4) C35—C48—C47 122.7 (5)
C20—C21—C22 124.1 (5) C49—C48—C47 119.2 (5)
C32—C21—C22 118.0 (4) C48—C49—C50 119.4 (4)
C23—C22—C21 121.9 (5) C48—C49—C38 121.0 (5)
C23—C22—H22 119.1 C50—C49—C38 119.6 (5)
C21—C22—H22 119.1 C45—C50—C49 120.0 (5)
C22—C23—C24 121.7 (5) C45—C50—C41 119.5 (5)
C22—C23—H23 119.2 C49—C50—C41 120.5 (4)
C24—C23—H23 119.2 O3—C51—H51A 109.5
C25—C24—C33 119.4 (5) O3—C51—H51B 109.5
C25—C24—C23 122.5 (5) H51A—C51—H51B 109.5
C33—C24—C23 118.1 (4) O3—C51—H51C 109.5
C26—C25—C24 120.4 (5) H51A—C51—H51C 109.5
C26—C25—H25 119.8 H51B—C51—H51C 109.5
C2—C1—O1—C17 −1 (2) O2—C18—C31—C30 0.3 (6)
C14—C1—O1—C17 178.2 (19) C19—C18—C31—C30 180.0 (4)
C2—C1—O1—C17A 0 (2) C29—C30—C31—C18 177.9 (4)
C14—C1—O1—C17A 179 (2) C29—C30—C31—C32 −3.4 (7)
O1—C1—C2—C3 −179.1 (6) C18—C31—C32—C33 −179.2 (4)
C14—C1—C2—C3 2.1 (9) C30—C31—C32—C33 2.0 (6)
C1—C2—C3—C4 −1.8 (10) C18—C31—C32—C21 0.4 (6)
C2—C3—C4—C15 0.8 (9) C30—C31—C32—C21 −178.3 (4)
C2—C3—C4—C5 179.5 (6) C20—C21—C32—C33 177.9 (4)
C3—C4—C5—C6 178.8 (6) C22—C21—C32—C33 −1.4 (6)
C15—C4—C5—C6 −2.5 (8) C20—C21—C32—C31 −1.8 (6)
C4—C5—C6—C7 0.5 (9) C22—C21—C32—C31 178.9 (4)
C5—C6—C7—C8 −179.1 (5) C27—C28—C33—C32 178.2 (4)
C5—C6—C7—C16 1.3 (8) C29—C28—C33—C32 −1.2 (6)
C6—C7—C8—C9 −179.5 (6) C27—C28—C33—C24 −1.8 (6)
C16—C7—C8—C9 0.2 (8) C29—C28—C33—C24 178.8 (4)
C7—C8—C9—C10 0.7 (10) C31—C32—C33—C28 0.2 (6)
C8—C9—C10—C11 0.0 (9) C21—C32—C33—C28 −179.4 (4)
C9—C10—C11—C16 −1.6 (8) C31—C32—C33—C24 −179.8 (4)
C9—C10—C11—C12 −179.9 (6) C21—C32—C33—C24 0.6 (6)
C16—C11—C12—C13 −0.6 (8) C25—C24—C33—C28 1.4 (6)
C10—C11—C12—C13 177.7 (5) C23—C24—C33—C28 −179.3 (4)
C11—C12—C13—C14 0.0 (8) C25—C24—C33—C32 −178.6 (4)
O1—C1—C14—C15 179.7 (4) C23—C24—C33—C32 0.7 (6)
C2—C1—C14—C15 −1.4 (8) C51—O3—C35—C36 1.5 (8)
O1—C1—C14—C13 1.0 (7) C51—O3—C35—C48 −178.9 (5)
C2—C1—C14—C13 179.8 (5) O3—C35—C36—C37 −178.8 (5)
C12—C13—C14—C1 −179.8 (5) C48—C35—C36—C37 1.5 (8)
C12—C13—C14—C15 1.5 (7) C35—C36—C37—C38 −1.8 (9)
C3—C4—C15—C16 −178.6 (5) C36—C37—C38—C49 0.4 (8)
C5—C4—C15—C16 2.7 (7) C36—C37—C38—C39 178.9 (6)
C3—C4—C15—C14 −0.1 (7) C37—C38—C39—C40 178.7 (5)
C5—C4—C15—C14 −178.9 (5) C49—C38—C39—C40 −2.8 (8)
C1—C14—C15—C16 178.9 (4) C38—C39—C40—C41 0.6 (8)
C13—C14—C15—C16 −2.3 (7) C39—C40—C41—C42 −179.4 (5)
C1—C14—C15—C4 0.5 (7) C39—C40—C41—C50 2.2 (8)
C13—C14—C15—C4 179.2 (4) C50—C41—C42—C43 0.4 (7)
C10—C11—C16—C15 −178.6 (4) C40—C41—C42—C43 −178.0 (5)
C12—C11—C16—C15 −0.2 (7) C41—C42—C43—C44 1.3 (8)
C10—C11—C16—C7 2.4 (7) C42—C43—C44—C45 −1.3 (9)
C12—C11—C16—C7 −179.2 (5) C43—C44—C45—C50 −0.5 (8)
C4—C15—C16—C11 −179.9 (5) C43—C44—C45—C46 179.9 (5)
C14—C15—C16—C11 1.7 (7) C44—C45—C46—C47 178.3 (5)
C4—C15—C16—C7 −0.9 (7) C50—C45—C46—C47 −1.3 (7)
C14—C15—C16—C7 −179.4 (4) C45—C46—C47—C48 0.1 (8)
C8—C7—C16—C11 −1.8 (7) O3—C35—C48—C49 −179.5 (4)
C6—C7—C16—C11 177.9 (5) C36—C35—C48—C49 0.1 (7)
C8—C7—C16—C15 179.3 (4) O3—C35—C48—C47 1.6 (7)
C6—C7—C16—C15 −1.1 (7) C36—C35—C48—C47 −178.8 (5)
C34—O2—C18—C19 0.9 (7) C46—C47—C48—C35 −179.5 (5)
C34—O2—C18—C31 −179.5 (4) C46—C47—C48—C49 1.6 (7)
O2—C18—C19—C20 178.1 (5) C35—C48—C49—C50 178.9 (4)
C31—C18—C19—C20 −1.6 (7) C47—C48—C49—C50 −2.1 (6)
C18—C19—C20—C21 0.1 (8) C35—C48—C49—C38 −1.6 (7)
C19—C20—C21—C32 1.5 (7) C47—C48—C49—C38 177.3 (4)
C19—C20—C21—C22 −179.2 (5) C37—C38—C49—C48 1.3 (7)
C20—C21—C22—C23 −178.2 (4) C39—C38—C49—C48 −177.3 (4)
C32—C21—C22—C23 1.1 (7) C37—C38—C49—C50 −179.2 (4)
C21—C22—C23—C24 0.2 (7) C39—C38—C49—C50 2.2 (7)
C22—C23—C24—C25 178.2 (4) C44—C45—C50—C49 −178.8 (4)
C22—C23—C24—C33 −1.1 (7) C46—C45—C50—C49 0.8 (6)
C33—C24—C25—C26 −0.4 (7) C44—C45—C50—C41 2.1 (6)
C23—C24—C25—C26 −179.7 (5) C46—C45—C50—C41 −178.3 (4)
C24—C25—C26—C27 −0.1 (8) C48—C49—C50—C45 0.9 (6)
C25—C26—C27—C28 −0.3 (8) C38—C49—C50—C45 −178.5 (4)
C26—C27—C28—C33 1.3 (7) C48—C49—C50—C41 179.9 (4)
C26—C27—C28—C29 −179.4 (5) C38—C49—C50—C41 0.5 (6)
C27—C28—C29—C30 −179.5 (4) C42—C41—C50—C45 −2.1 (7)
C33—C28—C29—C30 −0.2 (7) C40—C41—C50—C45 176.4 (4)
C28—C29—C30—C31 2.5 (7) C42—C41—C50—C49 178.9 (4)
O2—C18—C31—C32 −178.4 (4) C40—C41—C50—C49 −2.6 (7)
C19—C18—C31—C32 1.2 (7)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C38–C41/C50/C49, C7–C11/C16, C11–C16, and C28–C33 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C17—H17C···Cg1i 0.96 2.93 3.78 (3) 148
C34—H34C···Cg2i 0.96 2.99 3.770 (7) 140
C19—H19···Cg3i 0.93 2.99 3.733 (6) 138
C44—H44···Cg4 0.93 2.64 3.529 (6) 160

Symmetry code: (i) −x+1/2, y+1, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5089).

References

  1. Almeida, S., Rivera, E., Reyna-González, J. M., Huerta, G., Tapia, F. & Aguilar-Martínez, M. (2009). Synth. Met. 159, 1215–1223.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Camerman, A. & Trotter, J. (1965). Acta Cryst. 18, 636–643.
  5. Dössel, L. F., Kamm, V., Howard, I. A., Laquai, F., Pisula, W., Feng, X., Li, C., Takase, M., Kudernac, T., De Feyter, S. & Müllen, K. (2012). J. Am. Chem. Soc. 134, 5876–5886. [DOI] [PubMed]
  6. Gruber, T., Seichter, W. & Weber, E. (2006). Acta Cryst. E62, o2569–o2570.
  7. Gruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443. [DOI] [PMC free article] [PubMed]
  8. Kim, H. M., Lee, Y. O., Lim, C. S., Kim, J. S. & Cho, B. R. (2008). J. Org. Chem. 73, 5127–5130. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015003783/su5089sup1.cif

e-71-0o210-sup1.cif (481.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003783/su5089Isup2.hkl

e-71-0o210-Isup2.hkl (310.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003783/su5089Isup3.cml

A . DOI: 10.1107/S2056989015003783/su5089fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 35% probability level. The minor component of the disordered methyl group of mol­ecule A is not shown.

b . DOI: 10.1107/S2056989015003783/su5089fig2.tif

A view along the b axis of the crystal packing of the title compound, showing the laminar arrangement as a result of the π–π and C—H⋯π inter­actions (dashed lines; see Table 1 for details).

CCDC reference: 1050924

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES