Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 21;71(Pt 3):305–308. doi: 10.1107/S2056989015003369

Crystal structures of two hydrazinecarbo­thio­amide derivatives: (E)-N-ethyl-2-[(4-oxo-4H-chromen-3-yl)methyl­idene]hydrazinecarbo­thio­amide hemi­hydrate and (E)-2-[(4-chloro-2H-chromen-3-yl)methyl­idene]-N-phenyl­hydrazinecarbo­thio­amide

Rajeswari Gangadharan a, Jebiti Haribabu b, Ramasamy Karvembu b, K Sethusankar c,*
PMCID: PMC4350706  PMID: 25844194

The title compounds, (I) and (II), are hydrazinecarbo­thio­amide derivatives. In the crystal of (I), two independent mol­ecules are linked by bifurcated N—H⋯O and C—H⋯O hydrogen bonds, forming two Inline graphic(6) ring motifs, and Inline graphic(10) and Inline graphic(14) ring motifs. In the crystal of (II), mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif.

Keywords: crystal structure, hydrazinecarbo­thio­amide, thio­urea derivatives, α-N-heterocycle, hydrogen bonding

Abstract

The title compounds, C13H13N3O2S·0.5H2O, (I), and C17H14ClN3OS, (II), are hydrazinecarbo­thio­amide derivatives. Compound (I) crystallizes with two independent mol­ecules (A and B) and a water mol­ecule of crystallization in the asymmetric unit. The chromene moiety is essentially planar in mol­ecules A and B, with maximum deviations of 0.028 (3) and 0.016 (3) Å, respectively, for the carbonyl C atoms. In (II), the pyran ring of the chromene moiety adopts a screw-boat conformation and the phenyl ring is inclined by 61.18 (9)° to its mean plane. In the crystal of (I), bifurcated N—H⋯O and C—H⋯O hydrogen bonds link the two independent mol­ecules forming AB dimers with two R 2 1(6) ring motifs, and R 2 2(10) and R 2 2(14) ring motifs. In addition to these, the water mol­ecule forms tetra­furcated hydrogen bonds which alternately generate R 4 4(12) and R 6 6(22) graph-set ring motifs. There are also π–π [inter-centroid distances = 3.5648 (14) and 3.6825 (15) Å] inter­actions present, leading to the formation of columns along the c-axis direction. In the crystal of (II), mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—H⋯π inter­actions, forming ribbons lying parallel to (210).

Chemical context  

Thio­semicarbazones belong to a large group of thio­urea derivatives which are derived from parent aldehydes and ketones. The biological activity of these compounds depends on the parent aldehyde and ketone (Beraldo & Gambino, 2004). Derivatives of hydrazinecarbo­thio­amide constitute an important group of multidentate ligands with potential binding sites available for a wide variety of metal ions. The chemistry of thio­semicarbazone complexes has received much attention owing to their significant biological activities and medicinal properties. Presently, the areas in which thio­semicarbazones are receiving the most attention are based on their anti­tumour, anti­protozoal, anti­bacterial and anti­viral activities (Finch et al., 1999; Antholine et al., 1977). α-N-heterocyclic thio­semicarbazones possess anti­tumour properties partially related to their ability to inhibit ribonucleoside reductase (RR), an iron-containing enzyme which is essential in DNA synthesis (Sartorelli et al., 1970). The medicinal action of these thio­semicarbazones appears to be directly related to their ability to chelate the iron atom of the active site of RR or by destroying the tyrosinase radical present in a subunit of this protein (Thelander & Graslund, 1983). The structures of the title compounds were determined in order to investigate the extent of electron delocalization, ligand conformations and to illustrate their biological implications.graphic file with name e-71-00305-scheme1.jpg

Structural commentary  

In compound (I) (Fig. 1), the chromene moieties of mol­ecules A and B are essentially planar, with maximum deviations of 0.028 (3) and 0.016 (3) Å for atoms C7 and C7′, respectively. However, in compound (II) (Fig. 2), the chromene moiety is not quite planar with a dihedral angle of 5.67 (12)° between the mean planes of the fused six-membered rings. In compound (II), the pyran ring of the chromene moiety adopts a screw-boat conformation [puckering amplitudes and smallest displacement parameters are q = 0.314 (2) Å, θ = 116.4 (4)°, φ = 147.5 (5)° and ΔC2 = 0.7 (3)]. In compound (II), the dihedral angle between the chromene moiety and the phenyl ring is 61.18 (9)°. The deviation of the carbonyl O atoms (O2 and O2′) from the mean plane of the pyran ring in compound (I) are 0.0838 (18) and 0.0386 (19) Å in mol­ecules A and B, respectively, while the deviation of the Cl atom in compound (II) is 0.312 (1) Å.

Figure 1.

Figure 1

The mol­ecular structure of the two independent mol­ecules (A and B) of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The hydrazinecarbo­thio­amide backbone is almost planar, with the maximum deviation being exhibited by atom N2 in both compounds; 0.025 (2) and 0.051 (2) Å, respectively, in mol­ecules A and B of compound (I) and 0.072 (2) Å in compound (II).

Thio­semicarbazones exist in the thione form in the solid state and in solution they exist as an equilibrium mixture of thione and thiol forms (Kurup & Joseph, 2003). The fact that the compounds exists in the thione form is confirmed by the N—N, N—C and C=S bond lengths.. The C—S bond lengths are 1.681 (2) and 1.673 (2) Å in mol­ecules A and B, respectively, of compound (I), and 1.668 (2) Å in compound (II). These bond lengths are inter­mediate between normal S—Csp 2 single-bond and S=Csp 2 double-bond distances of ca 1.75 and 1.59 Å, respectively, indicating the presence of partial double-bond character (Kumbhar et al., 1997). The N1—N2 bond lengths [varying between 1.367 (2) and 1.369 (2) Å] are very close to that reported for a similar substituted hydrazine­carbo­thio­amide compound (Joseph et al., 2004). The resonance involving the pyran ring would account for the shortening of the N—N distance through extensive delocalization. The C—N bond lengths [varying between 1.324 (3) and 1.361 (3) Å] are shorter than the normal C—N single bond length (ca 1.48 Å), also indicating some degree of delocaliz­ation in both compounds. The S1=C11—N2—N1 torsion angles are 177.31 (16) and 174.29 (16)°, respectively, in mol­ecules A and B of compound (I) and −172.62 (17)° in compound (II). This indicates that the thionyl atom S1 is positioned trans to the azo­methane nitro­gen atom N1 in both compounds.

Supra­molecular features  

The water mol­ecule of crystallization plays an important role in the hydrogen-bonding patterns of the three-dimensional network in compound (I). In the crystal packing of compound (I), bifurcated N—H⋯O and C—H⋯O hydrogen bonds involving carbonyl oxygens O2 and O2′ in adjacent mol­ecules, inter­connect them to form AB dimers with two Inline graphic(6) ring motifs, and Inline graphic(10) and Inline graphic(14) ring motifs (Table 1 and Fig. 3). Similar bifurcated hydrogen bonds between mol­ecule A and the water O atom form an Inline graphic(10) ring motif. In addition to these, the water mol­ecule forms tetra­furcated hydrogen bonds which alternately generate Inline graphic(12) and Inline graphic(22) graph-set ring motifs. The supra­molecular aggregation in the crystal of compound (I) is completed by the presence of slipped parallel π–π inter­actions, forming columns along the c-axis direction. The most significant inter­actions are Cg1⋯Cg1i = 3.5648 (14) Å [inter-planar distance = 3.3154 (10) Å, slippage = 1.310 Å, where Cg1 is the centroid of the O1/C1/C6–C9 ring; symmetry code: (i) = −x + 1, −y + 1, −z + 1] and Cg5⋯Cg5ii = 3.6825 (15) Å [inter-planar distance = 3.5441 (11) Å, slippage = 0.999 Å, where Cg5 is the centroid of the C1′–C6′ ring; symmetry code: (ii) = −x + 2, −y + 1, −z].

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N2′—H2′A⋯O2i 0.86 2.09 2.900 (3) 158
N2—H2A⋯O2′i 0.86 2.14 2.938 (2) 155
N3—H3A⋯O1W 0.86 2.31 3.131 (3) 161
O1W—H1WB⋯S1′ 0.85 (3) 2.47 (3) 3.322 (2) 178 (4)
O1W—H1WA⋯S1ii 0.87 (2) 2.52 (2) 3.370 (3) 167 (4)
C9—H9⋯O1W 0.93 2.30 3.213 (4) 169
C10—H10⋯O2′i 0.93 2.51 3.297 (3) 143
C10′—H10′⋯O2i 0.93 2.52 3.302 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

A partial view along the c axis of the crystal packing of compound (I), showing the N—H⋯O, C—H⋯O and OW—H⋯S hydrogen bonds (dashed lines; see Table 1), which result in the formation of two Inline graphic(6) ring motifs and Inline graphic(10), Inline graphic(14), Inline graphic(12) and Inline graphic(22) ring motifs. H atoms not involved in hydrogen bonding have been omitted for clarity.

In the crystal of compound (II), mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif (Table 2 and Fig. 4). The dimers are linked by C—H⋯π inter­actions (Table 2), forming ribbons lying parallel to plane (210).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 is the centroid of the C12–C17 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.86 2.61 3.456 (2) 167
C2—H2⋯Cg1ii 0.93 2.86 3.697 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A partial view along the b axis of the crystal packing of compound (II), showing the N—H⋯S hydrogen bonds (dashed lines; see Table 2), which result in the formation of inversion dimers with an Inline graphic(8) ring motif. H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; last update Nov. 2014; Groom & Allen, 2014) for similar structures gave 3 hits, one of which is a copper(II) complex, di­bromo-(2-{[6-methyl-4-(oxo)-4H-chromen-3-yl]methyl­ene}- N-phenyl­hydrazinecarbo­thio­amide)­copper (Ilies et al., 2014). The other two include, N-methyl-2-[(4-oxo-4H-chromen-3-yl)methyl­ene] hydrazinecarbo­thio­amide (III) (Vimala et al., 2014), which is the N-methyl derivative of compound (I), and (E)-2-[(4-chloro-2H-chromen-3-yl)methyl­ene]-N-cyclo­hexylhydrazine carbo­thio­amide (IV) (Gangadharan et al., 2014), which is the N-cyclo­hexane derivative of compound (II). The bond distances and angles in compounds (I) and (III) are very similar, as are those in compounds (II) and (IV).

Synthesis and crystallization  

Compound (I): 1.19 g (0.01 mol) of N-ethyl­hydrazinecarbo­thio­amide was dissolved in 20 ml of hot ethanol and to this was added 1.74 g (0.01 mol) of 4-oxo-4H-chromene-3-carbaldehyde in 10 cm3 of ethanol over a period of 10 min with continuous stirring. The reaction mixture was refluxed for 2 h and allowed to cool whereby a shiny white compound began to separate; this was filtered and washed thoroughly with ethanol and then dried in vacuo. The compound was recrystallized from hot ethanol (yield: 96%), giving colourless block-like crystals.

Compound (II): 1.67 g (0.01 mol) of 4(N)-phenyl­thio­semicarbazide was dissolved in 20 ml of hot ethanol and to this was added 1.94 g (0.01 mol) of 4-chloro-2H-chromene-3-carbaldehyde in 10 ml of ethanol over a period of 10 min with continuous stirring. The reaction mixture was refluxed for 2 h and allowed to cool whereby a shiny yellow compound began to separate. It was filtered and washed thoroughly with ethanol and then dried in vacuo. The compound was recrystallized from hot ethanol (yield: 89%), giving colourless block-like crystals.

Refinement  

Crystal data, data collection and structure refinement details for compounds (I) and (II) are summarized in Table 3. For compound (I), the positions of the water H atoms were located from difference electron density maps and freely refined. In compounds (I) and (II), the NH H atoms were included in calculated positions and treated as riding atoms: N—H = 0.86 Å with U iso(H) = 1.2U eq(N). The C-bound H atoms in both mol­ecules were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C13H13N3O2S·0.5H2O C17H14ClN3OS
M r 284.33 343.82
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 8.2858 (2), 12.5422 (4), 14.3520 (5) 10.3176 (3), 5.7589 (2), 27.0364 (7)
α, β, γ (°) 114.379 (2), 95.751 (3), 94.200 (2) 90, 96.564 (2), 90
V3) 1340.81 (7) 1595.92 (8)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 0.38
Crystal size (mm) 0.35 × 0.30 × 0.25 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.917, 0.940 0.893, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 19142, 5579, 2764 14667, 3902, 2089
R int 0.046 0.050
(sin θ/λ)max−1) 0.631 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.137, 0.94 0.047, 0.124, 0.99
No. of reflections 5579 3902
No. of parameters 362 208
No. of restraints 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.24 0.23, −0.20

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015003369/su5078sup1.cif

e-71-00305-sup1.cif (53.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003369/su5078Isup2.hkl

e-71-00305-Isup2.hkl (273.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015003369/su5078IIsup3.hkl

e-71-00305-IIsup3.hkl (191.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003369/su5078Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015003369/su5078IIsup5.cml

CCDC references: 1016440, 1049914

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor D. Velmurugan and Mr T. Srinivasan, CAS in Crystallography and Biophysics, University of Madras, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Crystal data

C13H13N3O2S·0.5H2O Z = 4
Mr = 284.33 F(000) = 596
Triclinic, P1 Dx = 1.409 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2858 (2) Å Cell parameters from 5579 reflections
b = 12.5422 (4) Å θ = 1.6–26.6°
c = 14.3520 (5) Å µ = 0.25 mm1
α = 114.379 (2)° T = 296 K
β = 95.751 (3)° Block, colourless
γ = 94.200 (2)° 0.35 × 0.30 × 0.25 mm
V = 1340.81 (7) Å3

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Data collection

Bruker Kappa APEXII CCD diffractometer 5579 independent reflections
Radiation source: fine-focus sealed tube 2764 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
ω and φ scans θmax = 26.6°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.917, Tmax = 0.940 k = −14→15
19142 measured reflections l = −18→18

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0658P)2] where P = (Fo2 + 2Fc2)/3
5579 reflections (Δ/σ)max < 0.001
362 parameters Δρmax = 0.26 e Å3
2 restraints Δρmin = −0.24 e Å3

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1' 0.7753 (3) 0.4656 (2) −0.08664 (19) 0.0444 (6)
C1 0.8004 (3) 0.5298 (2) 0.46364 (19) 0.0425 (6)
C2' 0.8576 (3) 0.5059 (2) −0.1473 (2) 0.0557 (7)
H2' 0.8603 0.4568 −0.2163 0.067*
C2 0.8858 (3) 0.5665 (2) 0.4025 (2) 0.0557 (7)
H2 0.8976 0.5138 0.3360 0.067*
C3 0.9530 (3) 0.6821 (2) 0.4413 (2) 0.0581 (7)
H3 1.0107 0.7083 0.4008 0.070*
C3' 0.9351 (3) 0.6189 (2) −0.1045 (2) 0.0593 (8)
H3' 0.9903 0.6469 −0.1448 0.071*
C4' 0.9321 (3) 0.6925 (2) −0.0009 (2) 0.0572 (7)
H4' 0.9859 0.7690 0.0278 0.069*
C4 0.9357 (3) 0.7602 (2) 0.5402 (2) 0.0568 (7)
H4 0.9835 0.8382 0.5664 0.068*
C5 0.8487 (3) 0.7233 (2) 0.6000 (2) 0.0487 (6)
H5 0.8357 0.7768 0.6660 0.058*
C5' 0.8498 (3) 0.6520 (2) 0.0583 (2) 0.0503 (7)
H5' 0.8475 0.7017 0.1273 0.060*
C6 0.7792 (3) 0.6059 (2) 0.56270 (18) 0.0404 (6)
C6' 0.7691 (3) 0.5370 (2) 0.01658 (19) 0.0408 (6)
C7 0.6827 (3) 0.5632 (2) 0.62307 (19) 0.0420 (6)
C7' 0.6784 (3) 0.4911 (2) 0.07702 (19) 0.0429 (6)
C8' 0.6037 (3) 0.3694 (2) 0.02285 (18) 0.0409 (6)
C8 0.6228 (3) 0.43815 (19) 0.57379 (18) 0.0394 (6)
C9 0.6516 (3) 0.3722 (2) 0.47741 (19) 0.0488 (7)
H9 0.6102 0.2926 0.4477 0.059*
C9' 0.6189 (3) 0.3082 (2) −0.0777 (2) 0.0535 (7)
H9' 0.5693 0.2305 −0.1106 0.064*
C10 0.5298 (3) 0.3872 (2) 0.62971 (18) 0.0430 (6)
H10 0.5125 0.4350 0.6965 0.052*
C10' 0.5137 (3) 0.3172 (2) 0.07880 (19) 0.0456 (6)
H10' 0.5090 0.3620 0.1485 0.055*
C11 0.3128 (3) 0.1280 (2) 0.61075 (18) 0.0412 (6)
C11' 0.2875 (3) 0.0607 (2) 0.05910 (19) 0.0420 (6)
C12 0.2363 (3) −0.0610 (2) 0.45867 (19) 0.0538 (7)
H12A 0.1249 −0.0630 0.4739 0.065*
H12B 0.2923 −0.1109 0.4842 0.065*
C12' 0.1908 (3) −0.1203 (2) −0.09642 (19) 0.0524 (7)
H12C 0.0750 −0.1186 −0.0915 0.063*
H12D 0.2316 −0.1696 −0.0645 0.063*
C13' 0.2150 (4) −0.1715 (2) −0.2081 (2) 0.0732 (9)
H13D 0.1711 −0.1241 −0.2402 0.110*
H13E 0.1596 −0.2505 −0.2426 0.110*
H13F 0.3296 −0.1725 −0.2128 0.110*
C13 0.2336 (3) −0.1086 (2) 0.3439 (2) 0.0631 (8)
H13A 0.1773 −0.0598 0.3182 0.095*
H13B 0.1782 −0.1877 0.3115 0.095*
H13C 0.3437 −0.1086 0.3285 0.095*
N1 0.4719 (2) 0.27888 (16) 0.58919 (15) 0.0431 (5)
N1' 0.4412 (2) 0.21203 (17) 0.03521 (15) 0.0447 (5)
N2' 0.3664 (2) 0.17184 (16) 0.09748 (16) 0.0499 (5)
H2'A 0.3695 0.2178 0.1618 0.060*
N2 0.3884 (2) 0.24022 (16) 0.64915 (15) 0.0454 (5)
H2A 0.3837 0.2878 0.7121 0.055*
N3' 0.2766 (2) −0.00132 (17) −0.04207 (16) 0.0511 (6)
H3'A 0.3224 0.0303 −0.0773 0.061*
N3 0.3184 (2) 0.06031 (16) 0.51214 (15) 0.0475 (5)
H3A 0.3728 0.0889 0.4779 0.057*
O1 0.7355 (2) 0.41240 (14) 0.42089 (13) 0.0534 (5)
O1' 0.6999 (2) 0.35106 (14) −0.13347 (13) 0.0575 (5)
O2 0.6529 (2) 0.62856 (14) 0.70913 (13) 0.0603 (5)
O2' 0.6649 (2) 0.55142 (14) 0.16840 (14) 0.0644 (5)
O1W 0.4956 (3) 0.10193 (19) 0.34506 (17) 0.0689 (6)
S1' 0.21192 (9) 0.00898 (6) 0.13833 (5) 0.0591 (2)
S1 0.21930 (9) 0.08415 (6) 0.68995 (5) 0.0587 (2)
H1WA 0.569 (4) 0.054 (3) 0.326 (4) 0.18 (2)*
H1WB 0.422 (4) 0.080 (4) 0.293 (2) 0.16 (2)*

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1' 0.0496 (15) 0.0441 (15) 0.0419 (16) 0.0038 (12) 0.0133 (13) 0.0194 (13)
C1 0.0458 (15) 0.0384 (14) 0.0450 (16) 0.0025 (12) 0.0109 (13) 0.0186 (13)
C2' 0.0640 (17) 0.0635 (18) 0.0423 (16) 0.0010 (15) 0.0162 (14) 0.0244 (15)
C2 0.0649 (18) 0.0576 (18) 0.0497 (17) 0.0082 (15) 0.0259 (15) 0.0238 (15)
C3 0.0645 (18) 0.0609 (18) 0.0604 (19) 0.0022 (15) 0.0229 (15) 0.0348 (16)
C3' 0.0595 (18) 0.0645 (19) 0.063 (2) −0.0021 (15) 0.0179 (15) 0.0363 (17)
C4' 0.0574 (17) 0.0525 (17) 0.064 (2) −0.0023 (14) 0.0111 (15) 0.0284 (16)
C4 0.0595 (17) 0.0492 (16) 0.064 (2) −0.0055 (14) 0.0125 (15) 0.0278 (16)
C5 0.0547 (16) 0.0430 (15) 0.0467 (16) −0.0020 (13) 0.0092 (13) 0.0181 (13)
C5' 0.0566 (16) 0.0463 (15) 0.0475 (16) 0.0018 (13) 0.0113 (13) 0.0193 (13)
C6 0.0421 (14) 0.0411 (14) 0.0404 (15) 0.0030 (11) 0.0084 (12) 0.0194 (12)
C6' 0.0441 (14) 0.0392 (14) 0.0422 (15) 0.0051 (11) 0.0096 (12) 0.0196 (12)
C7 0.0483 (15) 0.0415 (14) 0.0366 (15) 0.0032 (12) 0.0064 (12) 0.0172 (13)
C7' 0.0481 (15) 0.0405 (14) 0.0411 (16) 0.0068 (12) 0.0129 (13) 0.0167 (13)
C8' 0.0460 (14) 0.0385 (14) 0.0389 (15) 0.0040 (11) 0.0113 (12) 0.0162 (12)
C8 0.0462 (14) 0.0349 (13) 0.0372 (15) 0.0031 (11) 0.0099 (12) 0.0150 (12)
C9 0.0612 (17) 0.0384 (14) 0.0463 (16) −0.0024 (13) 0.0167 (14) 0.0170 (13)
C9' 0.0697 (18) 0.0418 (15) 0.0472 (17) −0.0033 (13) 0.0186 (14) 0.0163 (14)
C10 0.0531 (15) 0.0389 (14) 0.0365 (14) 0.0013 (12) 0.0115 (12) 0.0151 (12)
C10' 0.0574 (16) 0.0398 (14) 0.0401 (15) 0.0045 (13) 0.0167 (13) 0.0156 (13)
C11 0.0483 (15) 0.0353 (14) 0.0417 (15) 0.0055 (12) 0.0119 (12) 0.0169 (12)
C11' 0.0468 (15) 0.0358 (14) 0.0432 (16) 0.0027 (12) 0.0100 (12) 0.0160 (12)
C12 0.0696 (18) 0.0405 (14) 0.0489 (17) −0.0031 (13) 0.0164 (14) 0.0164 (13)
C12' 0.0598 (17) 0.0452 (15) 0.0488 (17) −0.0027 (13) 0.0110 (14) 0.0174 (13)
C13' 0.094 (2) 0.0668 (19) 0.0442 (18) −0.0098 (17) 0.0102 (17) 0.0126 (15)
C13 0.0741 (19) 0.0524 (17) 0.0506 (18) −0.0046 (15) 0.0149 (15) 0.0105 (14)
N1 0.0539 (13) 0.0379 (12) 0.0395 (12) −0.0002 (10) 0.0126 (10) 0.0182 (10)
N1' 0.0547 (13) 0.0400 (12) 0.0417 (12) 0.0007 (10) 0.0154 (10) 0.0184 (10)
N2' 0.0680 (14) 0.0413 (12) 0.0389 (12) −0.0031 (11) 0.0175 (11) 0.0150 (10)
N2 0.0614 (13) 0.0371 (11) 0.0368 (12) −0.0003 (10) 0.0166 (10) 0.0136 (10)
N3' 0.0663 (14) 0.0437 (12) 0.0412 (13) −0.0063 (11) 0.0148 (11) 0.0164 (11)
N3 0.0602 (13) 0.0403 (12) 0.0422 (13) −0.0013 (10) 0.0180 (11) 0.0166 (10)
O1 0.0716 (12) 0.0426 (10) 0.0428 (11) −0.0008 (9) 0.0246 (9) 0.0125 (9)
O1' 0.0788 (13) 0.0477 (11) 0.0407 (11) −0.0064 (9) 0.0234 (10) 0.0127 (9)
O2 0.0948 (14) 0.0418 (10) 0.0390 (11) −0.0025 (10) 0.0261 (10) 0.0101 (9)
O2' 0.0966 (14) 0.0463 (11) 0.0427 (12) −0.0063 (10) 0.0302 (11) 0.0094 (9)
O1W 0.0823 (16) 0.0636 (14) 0.0546 (14) −0.0030 (13) 0.0150 (13) 0.0196 (11)
S1' 0.0820 (5) 0.0521 (4) 0.0441 (4) −0.0073 (4) 0.0147 (4) 0.0227 (4)
S1 0.0800 (5) 0.0487 (4) 0.0507 (4) −0.0004 (4) 0.0288 (4) 0.0214 (3)

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Geometric parameters (Å, º)

C1'—O1' 1.376 (3) C9'—O1' 1.338 (3)
C1'—C2' 1.382 (3) C9'—H9' 0.9300
C1'—C6' 1.388 (3) C10—N1 1.269 (3)
C1—C2 1.376 (3) C10—H10 0.9300
C1—O1 1.380 (3) C10'—N1' 1.273 (3)
C1—C6 1.385 (3) C10'—H10' 0.9300
C2'—C3' 1.366 (3) C11—N3 1.324 (3)
C2'—H2' 0.9300 C11—N2 1.356 (3)
C2—C3 1.370 (3) C11—S1 1.681 (2)
C2—H2 0.9300 C11'—N3' 1.324 (3)
C3—C4 1.382 (4) C11'—N2' 1.354 (3)
C3—H3 0.9300 C11'—S1' 1.673 (2)
C3'—C4' 1.392 (4) C12—N3 1.465 (3)
C3'—H3' 0.9300 C12—C13 1.500 (3)
C4'—C5' 1.367 (3) C12—H12A 0.9700
C4'—H4' 0.9300 C12—H12B 0.9700
C4—C5 1.369 (3) C12'—N3' 1.454 (3)
C4—H4 0.9300 C12'—C13' 1.501 (3)
C5—C6 1.396 (3) C12'—H12C 0.9700
C5—H5 0.9300 C12'—H12D 0.9700
C5'—C6' 1.398 (3) C13'—H13D 0.9600
C5'—H5' 0.9300 C13'—H13E 0.9600
C6—C7 1.461 (3) C13'—H13F 0.9600
C6'—C7' 1.458 (3) C13—H13A 0.9600
C7—O2 1.230 (3) C13—H13B 0.9600
C7—C8 1.452 (3) C13—H13C 0.9600
C7'—O2' 1.236 (3) N1—N2 1.367 (2)
C7'—C8' 1.451 (3) N1'—N2' 1.369 (2)
C8'—C9' 1.350 (3) N2'—H2'A 0.8600
C8'—C10' 1.453 (3) N2—H2A 0.8600
C8—C9 1.344 (3) N3'—H3'A 0.8600
C8—C10 1.457 (3) N3—H3A 0.8600
C9—O1 1.339 (2) O1W—H1WA 0.866 (19)
C9—H9 0.9300 O1W—H1WB 0.847 (19)
O1'—C1'—C2' 116.8 (2) N1—C10—C8 121.4 (2)
O1'—C1'—C6' 121.5 (2) N1—C10—H10 119.3
C2'—C1'—C6' 121.7 (2) C8—C10—H10 119.3
C2—C1—O1 116.5 (2) N1'—C10'—C8' 121.9 (2)
C2—C1—C6 122.3 (2) N1'—C10'—H10' 119.0
O1—C1—C6 121.3 (2) C8'—C10'—H10' 119.0
C3'—C2'—C1' 119.2 (2) N3—C11—N2 116.8 (2)
C3'—C2'—H2' 120.4 N3—C11—S1 124.54 (18)
C1'—C2'—H2' 120.4 N2—C11—S1 118.62 (18)
C3—C2—C1 118.8 (2) N3'—C11'—N2' 116.0 (2)
C3—C2—H2 120.6 N3'—C11'—S1' 123.86 (18)
C1—C2—H2 120.6 N2'—C11'—S1' 120.18 (19)
C2—C3—C4 120.5 (2) N3—C12—C13 111.8 (2)
C2—C3—H3 119.8 N3—C12—H12A 109.2
C4—C3—H3 119.8 C13—C12—H12A 109.2
C2'—C3'—C4' 120.6 (2) N3—C12—H12B 109.2
C2'—C3'—H3' 119.7 C13—C12—H12B 109.2
C4'—C3'—H3' 119.7 H12A—C12—H12B 107.9
C5'—C4'—C3' 119.9 (2) N3'—C12'—C13' 110.4 (2)
C5'—C4'—H4' 120.1 N3'—C12'—H12C 109.6
C3'—C4'—H4' 120.1 C13'—C12'—H12C 109.6
C5—C4—C3 120.3 (2) N3'—C12'—H12D 109.6
C5—C4—H4 119.8 C13'—C12'—H12D 109.6
C3—C4—H4 119.8 H12C—C12'—H12D 108.1
C4—C5—C6 120.5 (2) C12'—C13'—H13D 109.5
C4—C5—H5 119.7 C12'—C13'—H13E 109.5
C6—C5—H5 119.7 H13D—C13'—H13E 109.5
C4'—C5'—C6' 120.8 (2) C12'—C13'—H13F 109.5
C4'—C5'—H5' 119.6 H13D—C13'—H13F 109.5
C6'—C5'—H5' 119.6 H13E—C13'—H13F 109.5
C1—C6—C5 117.6 (2) C12—C13—H13A 109.5
C1—C6—C7 120.0 (2) C12—C13—H13B 109.5
C5—C6—C7 122.3 (2) H13A—C13—H13B 109.5
C1'—C6'—C5' 117.9 (2) C12—C13—H13C 109.5
C1'—C6'—C7' 119.7 (2) H13A—C13—H13C 109.5
C5'—C6'—C7' 122.4 (2) H13B—C13—H13C 109.5
O2—C7—C8 122.2 (2) C10—N1—N2 116.40 (19)
O2—C7—C6 122.6 (2) C10'—N1'—N2' 116.1 (2)
C8—C7—C6 115.2 (2) C11'—N2'—N1' 120.9 (2)
O2'—C7'—C8' 121.7 (2) C11'—N2'—H2'A 119.6
O2'—C7'—C6' 122.7 (2) N1'—N2'—H2'A 119.6
C8'—C7'—C6' 115.7 (2) C11—N2—N1 120.95 (19)
C9'—C8'—C7' 119.3 (2) C11—N2—H2A 119.5
C9'—C8'—C10' 122.0 (2) N1—N2—H2A 119.5
C7'—C8'—C10' 118.7 (2) C11'—N3'—C12' 123.2 (2)
C9—C8—C7 119.7 (2) C11'—N3'—H3'A 118.4
C9—C8—C10 121.4 (2) C12'—N3'—H3'A 118.4
C7—C8—C10 119.0 (2) C11—N3—C12 123.1 (2)
O1—C9—C8 125.0 (2) C11—N3—H3A 118.5
O1—C9—H9 117.5 C12—N3—H3A 118.5
C8—C9—H9 117.5 C9—O1—C1 118.76 (18)
O1'—C9'—C8' 124.9 (2) C9'—O1'—C1' 118.85 (19)
O1'—C9'—H9' 117.5 H1WA—O1W—H1WB 106 (4)
C8'—C9'—H9' 117.5
O1'—C1'—C2'—C3' −179.8 (2) C6'—C7'—C8'—C10' 179.0 (2)
C6'—C1'—C2'—C3' 0.1 (4) O2—C7—C8—C9 176.4 (2)
O1—C1—C2—C3 −179.9 (2) C6—C7—C8—C9 −2.9 (3)
C6—C1—C2—C3 0.5 (4) O2—C7—C8—C10 −2.5 (4)
C1—C2—C3—C4 0.2 (4) C6—C7—C8—C10 178.11 (19)
C1'—C2'—C3'—C4' 0.3 (4) C7—C8—C9—O1 0.9 (4)
C2'—C3'—C4'—C5' −0.6 (4) C10—C8—C9—O1 179.8 (2)
C2—C3—C4—C5 −1.1 (4) C7'—C8'—C9'—O1' 0.3 (4)
C3—C4—C5—C6 1.3 (4) C10'—C8'—C9'—O1' 180.0 (2)
C3'—C4'—C5'—C6' 0.4 (4) C9—C8—C10—N1 −0.4 (4)
C2—C1—C6—C5 −0.3 (4) C7—C8—C10—N1 178.5 (2)
O1—C1—C6—C5 −179.9 (2) C9'—C8'—C10'—N1' −1.7 (4)
C2—C1—C6—C7 177.9 (2) C7'—C8'—C10'—N1' 177.9 (2)
O1—C1—C6—C7 −1.7 (4) C8—C10—N1—N2 179.22 (18)
C4—C5—C6—C1 −0.6 (4) C8'—C10'—N1'—N2' 177.44 (19)
C4—C5—C6—C7 −178.8 (2) N3'—C11'—N2'—N1' −5.3 (3)
O1'—C1'—C6'—C5' 179.6 (2) S1'—C11'—N2'—N1' 174.29 (16)
C2'—C1'—C6'—C5' −0.2 (4) C10'—N1'—N2'—C11' −179.2 (2)
O1'—C1'—C6'—C7' −1.1 (4) N3—C11—N2—N1 −2.7 (3)
C2'—C1'—C6'—C7' 179.0 (2) S1—C11—N2—N1 177.31 (16)
C4'—C5'—C6'—C1' 0.0 (4) C10—N1—N2—C11 175.7 (2)
C4'—C5'—C6'—C7' −179.3 (2) N2'—C11'—N3'—C12' −177.6 (2)
C1—C6—C7—O2 −176.0 (2) S1'—C11'—N3'—C12' 2.8 (3)
C5—C6—C7—O2 2.1 (4) C13'—C12'—N3'—C11' −174.1 (2)
C1—C6—C7—C8 3.3 (3) N2—C11—N3—C12 −177.1 (2)
C5—C6—C7—C8 −178.5 (2) S1—C11—N3—C12 2.8 (3)
C1'—C6'—C7'—O2' −178.0 (2) C13—C12—N3—C11 168.4 (2)
C5'—C6'—C7'—O2' 1.2 (4) C8—C9—O1—C1 1.0 (4)
C1'—C6'—C7'—C8' 1.7 (3) C2—C1—O1—C9 179.8 (2)
C5'—C6'—C7'—C8' −179.1 (2) C6—C1—O1—C9 −0.5 (3)
O2'—C7'—C8'—C9' 178.4 (2) C8'—C9'—O1'—C1' 0.4 (4)
C6'—C7'—C8'—C9' −1.3 (3) C2'—C1'—O1'—C9' 179.9 (2)
O2'—C7'—C8'—C10' −1.3 (3) C6'—C1'—O1'—C9' 0.1 (3)

(I) (E)-N-Ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2′—H2′A···O2i 0.86 2.09 2.900 (3) 158
N2—H2A···O2′i 0.86 2.14 2.938 (2) 155
N3—H3A···O1W 0.86 2.31 3.131 (3) 161
O1W—H1WB···S1′ 0.85 (3) 2.47 (3) 3.322 (2) 178 (4)
O1W—H1WA···S1ii 0.87 (2) 2.52 (2) 3.370 (3) 167 (4)
C9—H9···O1W 0.93 2.30 3.213 (4) 169
C10—H10···O2′i 0.93 2.51 3.297 (3) 143
C10′—H10′···O2i 0.93 2.52 3.302 (3) 142

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Crystal data

C17H14ClN3OS F(000) = 712
Mr = 343.82 Dx = 1.431 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3902 reflections
a = 10.3176 (3) Å θ = 1.5–28.4°
b = 5.7589 (2) Å µ = 0.38 mm1
c = 27.0364 (7) Å T = 296 K
β = 96.564 (2)° Block, colourless
V = 1595.92 (8) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Data collection

Bruker Kappa APEXII CCD diffractometer 3902 independent reflections
Radiation source: fine-focus sealed tube 2089 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
ω and φ scans θmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.893, Tmax = 0.927 k = −7→7
14667 measured reflections l = −35→35

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.053P)2 + 0.0466P] where P = (Fo2 + 2Fc2)/3
3902 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.20 e Å3

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4918 (3) −0.2996 (5) −0.10347 (12) 0.0665 (8)
H1 0.4591 −0.3879 −0.0789 0.080*
C2 0.4637 (3) −0.3582 (5) −0.15313 (13) 0.0749 (9)
H2 0.4120 −0.4872 −0.1621 0.090*
C3 0.5116 (3) −0.2267 (6) −0.18911 (12) 0.0759 (9)
H3 0.4921 −0.2669 −0.2224 0.091*
C4 0.5882 (3) −0.0365 (5) −0.17654 (10) 0.0622 (7)
H4 0.6193 0.0518 −0.2015 0.075*
C5 0.6198 (2) 0.0260 (4) −0.12710 (8) 0.0457 (6)
C6 0.5690 (2) −0.1087 (4) −0.09079 (10) 0.0531 (6)
C7 0.6397 (3) 0.1634 (4) −0.02714 (9) 0.0563 (7)
H7A 0.6881 0.1612 0.0058 0.068*
H7B 0.5608 0.2529 −0.0251 0.068*
C8 0.7205 (2) 0.2839 (4) −0.06223 (8) 0.0456 (6)
C9 0.7056 (2) 0.2157 (4) −0.11002 (8) 0.0446 (6)
C10 0.7994 (2) 0.4764 (4) −0.04404 (9) 0.0490 (6)
H10 0.8449 0.5619 −0.0656 0.059*
C11 0.8930 (2) 0.7961 (4) 0.06460 (8) 0.0458 (6)
C12 0.8439 (2) 0.6739 (4) 0.14825 (8) 0.0430 (6)
C13 0.8894 (2) 0.4948 (4) 0.17950 (9) 0.0497 (6)
H13 0.9269 0.3642 0.1667 0.060*
C14 0.8788 (2) 0.5110 (5) 0.22994 (9) 0.0538 (7)
H14 0.9088 0.3902 0.2510 0.065*
C15 0.8245 (2) 0.7033 (5) 0.24904 (9) 0.0563 (7)
H15 0.8189 0.7146 0.2831 0.068*
C16 0.7784 (2) 0.8787 (5) 0.21777 (9) 0.0580 (7)
H16 0.7407 1.0086 0.2307 0.070*
C17 0.7870 (2) 0.8659 (4) 0.16725 (9) 0.0520 (6)
H17 0.7547 0.9856 0.1463 0.062*
N1 0.80705 (19) 0.5309 (3) 0.00252 (7) 0.0496 (5)
N2 0.87785 (19) 0.7257 (4) 0.01625 (7) 0.0533 (5)
H2A 0.9130 0.8041 −0.0058 0.064*
N3 0.84862 (19) 0.6451 (3) 0.09615 (7) 0.0520 (5)
H3A 0.8196 0.5154 0.0836 0.062*
O1 0.60439 (18) −0.0669 (3) −0.04098 (6) 0.0662 (5)
Cl1 0.79000 (7) 0.35034 (13) −0.15374 (2) 0.0649 (2)
S1 0.96413 (7) 1.05093 (12) 0.07927 (2) 0.0565 (2)

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0604 (16) 0.0548 (19) 0.086 (2) −0.0045 (14) 0.0171 (15) −0.0053 (17)
C2 0.0523 (16) 0.070 (2) 0.101 (3) −0.0045 (15) 0.0005 (16) −0.030 (2)
C3 0.0651 (18) 0.092 (3) 0.068 (2) 0.0024 (18) −0.0059 (15) −0.0280 (19)
C4 0.0606 (16) 0.074 (2) 0.0509 (16) 0.0048 (15) 0.0005 (13) −0.0125 (15)
C5 0.0467 (13) 0.0493 (15) 0.0410 (13) 0.0075 (11) 0.0046 (10) −0.0025 (12)
C6 0.0534 (14) 0.0502 (17) 0.0564 (16) 0.0037 (12) 0.0089 (12) −0.0055 (13)
C7 0.0773 (17) 0.0502 (17) 0.0437 (14) −0.0077 (14) 0.0160 (12) 0.0006 (13)
C8 0.0527 (13) 0.0474 (15) 0.0375 (13) 0.0009 (12) 0.0093 (10) 0.0022 (12)
C9 0.0500 (13) 0.0473 (15) 0.0374 (12) 0.0027 (11) 0.0096 (10) 0.0037 (11)
C10 0.0584 (15) 0.0506 (16) 0.0387 (13) −0.0022 (12) 0.0088 (11) 0.0028 (12)
C11 0.0528 (14) 0.0441 (15) 0.0416 (13) 0.0011 (11) 0.0103 (11) 0.0004 (12)
C12 0.0496 (13) 0.0409 (15) 0.0397 (13) −0.0090 (11) 0.0099 (10) −0.0015 (11)
C13 0.0582 (15) 0.0412 (15) 0.0522 (15) 0.0008 (12) 0.0167 (12) −0.0038 (12)
C14 0.0631 (16) 0.0518 (17) 0.0479 (15) −0.0023 (13) 0.0123 (12) 0.0063 (13)
C15 0.0646 (16) 0.0636 (19) 0.0428 (14) −0.0140 (14) 0.0156 (12) −0.0079 (14)
C16 0.0673 (16) 0.0512 (17) 0.0589 (17) −0.0020 (13) 0.0211 (13) −0.0143 (14)
C17 0.0623 (16) 0.0413 (15) 0.0539 (15) 0.0029 (12) 0.0128 (12) 0.0021 (13)
N1 0.0624 (13) 0.0435 (13) 0.0433 (12) −0.0043 (10) 0.0083 (9) −0.0006 (10)
N2 0.0713 (13) 0.0527 (14) 0.0368 (11) −0.0131 (11) 0.0101 (9) 0.0021 (10)
N3 0.0789 (14) 0.0406 (12) 0.0386 (11) −0.0136 (11) 0.0148 (10) −0.0063 (10)
O1 0.0928 (13) 0.0550 (13) 0.0525 (11) −0.0160 (10) 0.0162 (10) 0.0034 (10)
Cl1 0.0802 (5) 0.0762 (5) 0.0411 (4) −0.0098 (4) 0.0189 (3) 0.0059 (3)
S1 0.0796 (5) 0.0433 (4) 0.0488 (4) −0.0101 (3) 0.0162 (3) −0.0023 (3)

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Geometric parameters (Å, º)

C1—C6 1.378 (3) C10—H10 0.9300
C1—C2 1.383 (4) C11—N3 1.335 (3)
C1—H1 0.9300 C11—N2 1.361 (3)
C2—C3 1.369 (4) C11—S1 1.668 (2)
C2—H2 0.9300 C12—C17 1.378 (3)
C3—C4 1.371 (4) C12—C13 1.381 (3)
C3—H3 0.9300 C12—N3 1.425 (3)
C4—C5 1.387 (3) C13—C14 1.384 (3)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.399 (3) C14—C15 1.369 (3)
C5—C9 1.448 (3) C14—H14 0.9300
C6—O1 1.375 (3) C15—C16 1.367 (3)
C7—O1 1.414 (3) C15—H15 0.9300
C7—C8 1.503 (3) C16—C17 1.381 (3)
C7—H7A 0.9700 C16—H16 0.9300
C7—H7B 0.9700 C17—H17 0.9300
C8—C9 1.343 (3) N1—N2 1.367 (3)
C8—C10 1.429 (3) N2—H2A 0.8600
C9—Cl1 1.730 (2) N3—H3A 0.8600
C10—N1 1.291 (3)
C6—C1—C2 119.2 (3) N1—C10—H10 120.2
C6—C1—H1 120.4 C8—C10—H10 120.2
C2—C1—H1 120.4 N3—C11—N2 114.2 (2)
C3—C2—C1 120.1 (3) N3—C11—S1 126.51 (18)
C3—C2—H2 119.9 N2—C11—S1 119.31 (18)
C1—C2—H2 119.9 C17—C12—C13 120.0 (2)
C2—C3—C4 120.7 (3) C17—C12—N3 121.7 (2)
C2—C3—H3 119.6 C13—C12—N3 118.1 (2)
C4—C3—H3 119.6 C12—C13—C14 119.5 (2)
C3—C4—C5 120.8 (3) C12—C13—H13 120.2
C3—C4—H4 119.6 C14—C13—H13 120.2
C5—C4—H4 119.6 C15—C14—C13 120.6 (2)
C4—C5—C6 117.8 (2) C15—C14—H14 119.7
C4—C5—C9 124.8 (2) C13—C14—H14 119.7
C6—C5—C9 117.3 (2) C16—C15—C14 119.5 (2)
O1—C6—C1 117.7 (3) C16—C15—H15 120.2
O1—C6—C5 120.8 (2) C14—C15—H15 120.2
C1—C6—C5 121.3 (3) C15—C16—C17 121.0 (2)
O1—C7—C8 114.2 (2) C15—C16—H16 119.5
O1—C7—H7A 108.7 C17—C16—H16 119.5
C8—C7—H7A 108.7 C12—C17—C16 119.3 (2)
O1—C7—H7B 108.7 C12—C17—H17 120.3
C8—C7—H7B 108.7 C16—C17—H17 120.3
H7A—C7—H7B 107.6 C10—N1—N2 115.8 (2)
C9—C8—C10 123.8 (2) C11—N2—N1 120.31 (19)
C9—C8—C7 117.5 (2) C11—N2—H2A 119.8
C10—C8—C7 118.4 (2) N1—N2—H2A 119.8
C8—C9—C5 121.8 (2) C11—N3—C12 127.5 (2)
C8—C9—Cl1 121.0 (2) C11—N3—H3A 116.3
C5—C9—Cl1 117.22 (17) C12—N3—H3A 116.3
N1—C10—C8 119.6 (2) C6—O1—C7 117.04 (19)
C6—C1—C2—C3 −0.3 (4) C9—C8—C10—N1 179.3 (2)
C1—C2—C3—C4 0.2 (4) C7—C8—C10—N1 5.2 (3)
C2—C3—C4—C5 0.6 (4) C17—C12—C13—C14 −0.8 (3)
C3—C4—C5—C6 −1.2 (4) N3—C12—C13—C14 −176.0 (2)
C3—C4—C5—C9 176.4 (2) C12—C13—C14—C15 −0.4 (4)
C2—C1—C6—O1 −174.5 (2) C13—C14—C15—C16 1.1 (4)
C2—C1—C6—C5 −0.3 (4) C14—C15—C16—C17 −0.7 (4)
C4—C5—C6—O1 175.1 (2) C13—C12—C17—C16 1.2 (3)
C9—C5—C6—O1 −2.7 (3) N3—C12—C17—C16 176.3 (2)
C4—C5—C6—C1 1.1 (3) C15—C16—C17—C12 −0.5 (4)
C9—C5—C6—C1 −176.8 (2) C8—C10—N1—N2 −176.1 (2)
O1—C7—C8—C9 27.7 (3) N3—C11—N2—N1 8.2 (3)
O1—C7—C8—C10 −157.8 (2) S1—C11—N2—N1 −172.62 (17)
C10—C8—C9—C5 −177.1 (2) C10—N1—N2—C11 −179.3 (2)
C7—C8—C9—C5 −2.9 (3) N2—C11—N3—C12 −176.3 (2)
C10—C8—C9—Cl1 3.5 (3) S1—C11—N3—C12 4.7 (4)
C7—C8—C9—Cl1 177.74 (17) C17—C12—N3—C11 52.3 (3)
C4—C5—C9—C8 172.2 (2) C13—C12—N3—C11 −132.6 (2)
C6—C5—C9—C8 −10.1 (3) C1—C6—O1—C7 −157.2 (2)
C4—C5—C9—Cl1 −8.4 (3) C5—C6—O1—C7 28.6 (3)
C6—C5—C9—Cl1 169.29 (17) C8—C7—O1—C6 −40.3 (3)

(II) (E)-2-[(4-Chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazinecarbothioamide . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C12–C17 phenyl ring.

D—H···A D—H H···A D···A D—H···A
N2—H2A···S1i 0.86 2.61 3.456 (2) 167
C2—H2···Cg1ii 0.93 2.86 3.697 (3) 151

Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y, −z.

References

  1. Antholine, W., Knight, J., Whelan, H. & Petering, D. H. (1977). Mol. Pharmacol. 13, 89–98. [PubMed]
  2. Beraldo, H. & Gambino, D. (2004). Mini. Rev. Med. Chem. 4, 31–39. [DOI] [PubMed]
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Finch, R. A., Liu, M. C., Cory, A. H., Cory, J. G. & Sartorelli, A. C. (1999). Adv. Enzyme Regul. 39, 3–12. [DOI] [PubMed]
  6. Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2014). Acta Cryst. E70, o1039–o1040. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Ilies, D.-C., Pahontu, E., Shova, S., Georgescu, R., Stanica, N., Olar, R., Gulea, A. & Rosu, T. (2014). Polyhedron, 81, 123–131.
  9. Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H.-K. (2004). J. Mol. Struct. 705, 63–70.
  10. Kumbhar, A., Sonawane, P., Padhye, S., West, D. X. & Butcher, R. J. (1997). J. Chem. Crystallogr. 27, 533–539.
  11. Kurup, M. R. P. & Joseph, M. (2003). Synth. React Inorg. Met. Org. Chem. 33, 1275–1287.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Sartorelli, A. C., Moore, E. C., Zedeck, M. S. & Agrawal, K. C. (1970). Biochemistry, 9, 4492–4498. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Thelander, L. & Gräslund, A. (1983). J. Biol. Chem. 258, 4063–4066. [PubMed]
  17. Vimala, G., Govindaraj, J., Haribabu, J., Karvembu, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, o1151. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989015003369/su5078sup1.cif

e-71-00305-sup1.cif (53.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003369/su5078Isup2.hkl

e-71-00305-Isup2.hkl (273.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015003369/su5078IIsup3.hkl

e-71-00305-IIsup3.hkl (191.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003369/su5078Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015003369/su5078IIsup5.cml

CCDC references: 1016440, 1049914

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES