Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 7;71(Pt 3):254–257. doi: 10.1107/S2056989015002091

Crystal structure of N-{N-[N-acetyl-(S)-leuc­yl]-(S)-leuc­yl}norleucinal (ALLN), an inhibitor of proteasome

Andrzej Czerwinski a, Channa Basava a, Miroslawa Dauter b, Zbigniew Dauter c,*
PMCID: PMC4350719  PMID: 25844180

The crystal structure of ALLN, the tripeptidic inhibitor of proteasomes, is solved from synchrotron diffraction data. An infinite β-sheet extended through the crystal is formed by symmetry-related oligopeptide mol­ecules in extended conformation.

Keywords: crystal structure, proteasome inhib­itor, hydrogen bonding, anti­parallel β-sheet.

Abstract

The title compound, C20H37N3O4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. The crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the mol­ecules in extended conformation of the backbone and engaging all peptide N and O atoms in inter­molecular hydrogen bonds forming an infinite anti­parallel β-sheet.

Chemical context  

Proteasomes are high-mol­ecular-mass multicatalytic enzyme complexes localized in the nucleus and cytosol of all eukaryotic cells. As a part of the ubiquitin–proteasome pathway, the complex executes a remarkable set of functions, ranging from the complete destruction of abnormal and misfolded proteins to the specific proteolytic activation of crucial signaling mol­ecules (Adams, 2003; Groll & Potts, 2011). The ubiquitin–proteasome pathway has been implicated in several forms of malignancy, in the pathogenesis of some autoimmune disorders, the aging process related cardiac dysfunction, diabetic complications, and neurodegenerative diseases (e.g. Alzheimer’s, Parkinson’s, Huntington’s) (Dahlmann, 2007; Paul, 2008; Jankowska et al., 2013). Therefore, study of proteasome functions and the design and development of proteasome inhibitors is being pursued in many laboratories (Bennett & Kirk, 2008). A great amount of effort has been expended to explore proteasome inhibition as a novel targeted approach in cancer therapy. The first success came with FDA approval of Bortezomid for the treatment of multiple myeloma (Kane et al., 2006; Goldberg, 2012). Since then, numerous compounds have been reported to inhibit the components of the ubiquitin–proteasome system, and several new drug candidates undergoing clinical trials have emerged (Genin et al., 2010; Tsukamoto & Yokosawa, 2010; Frankland-Searby & Bhaumik, 2012; Jankowska et al., 2013). Peptide aldehydes were the first inhibitors designed to target the proteasome, and are still the most commonly used and best characterized group of such inhibitors (Kisselev et al., 2012). A notable one among them, Ac-Leu-Leu-Nle-H (ALLN, MG101), is also a potent inhibitor of nonproteasomal cysteine protease calpain I (Pietsch et al., 2010). ALLN, a cell-permeable tripeptide aldehyde reversible inhibitor of chymotripsin-like proteolytic activity of the proteasomes, was the first to be crystallized in a complex with an eukaryotic proteasome (Groll et al., 1997). Crystallographic analysis of the complex at 2.4 Å resolution revealed a structural organization of the proteasome and how the inhibitor binds to its active site. ALLN, as well as other peptide aldehydes, do it via reversible hemiacetal formation with the involvement of N-terminal threonine hy­droxy group in the proteasome β-subunits (Borissenko & Groll, 2007). The aldehyde structure derived from the crystal complex coordinates was used in mol­ecular modeling of inhibitor-proteasome inter­actions (Zhang et al., 2009). High resolution structural data from this study may provide better accuracy in future modeling of the inhibitor inter­actions with proteasome and other potential intra­cellular targets.graphic file with name e-71-00254-scheme1.jpg

Structural commentary  

We report here the crystal structure of ALLN refined against 0.65 Å resolution diffraction data measured with synchrotron radiation. The mol­ecule adopts an extended conformation of the backbone chain (Fig. 1) with the ϕ,ψ-torsion angles residing in the β region of the Ramachandran plot (Ramakrishnan & Ramachandran, 1965). All three consecutive peptide residues are in trans conformation and their ω angles are −179.42 (9), 173.77 (8), and 177.72 (10)°. The side chains of the two leucine and one norleucine residues have unstrained conformations, and do not deviate by more than 7° from either trans or gauche rotamers along the consecutive C—C bonds.

Figure 1.

Figure 1

The mol­ecule of ALLN, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

All of the peptide ALLN N and O atoms are engaged in inter­molecular hydrogen bonds (Table 1) between mol­ecules related by the crystallographic 21 axis, forming an infinite anti­parallel β-sheet throughout the crystal (Fig. 2). The inter­actions between the sheets are mainly by the hydro­phobic contacts of the aliphatic amino acid side chains. The arrangement of ALLN molecules in the ac plane, interacting through their aliphatic side chains, is illustrated in Fig. 3.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N20H201O31i 0.88 2.05 2.897(3) 161
N30H301O21ii 0.88 1.99 2.863(3) 171
N40H401O12i 0.88 1.96 2.827(3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Backbones of three neighboring mol­ecules of ALLN, forming a fragment of an anti­parallel β-sheet extending through the crystal. The amino acid side chains are not shown for clarity.

Figure 3.

Figure 3

Arrangement of ALLN mol­ecules in the ac plane of the crystal, inter­acting through their aliphatic side chains.

Synthesis and crystallization  

The title aldehyde was prepared according to the general synthetic procedure reported by Schaschke et al. (1996), and a 45% overall yield was obtained. The product was crystallized from aceto­nitrile.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. A needle-like crystal elongated in the a direction was selected, picked up in the rayon loop and then quickly cryo-cooled in a stream of cold nitro­gen gas at the single-axis goniostat of the SER-CAT synchrotron station ID19 at the Advanced Photon Source, Argonne National Laboratory, USA. Diffraction images were collected with the use of MAR300 CCD detector in two passes differing in the effective exposure and resolution limits in order to adequately measure the weakest high-resolution reflections, as well as the strongest low-angle reflections without overloading detector pixels. All 38117 measured intensities from both passes were integrated, scaled and merged by HKL-2000 (Otwinowski & Minor, 1997) into the set of 4561 unique reflections with the overall R merge factor of 0.049. The data set is rather strong, with the I/σ(I) ratio equal to 25 at the highest resolution of 0.65 Å. H atoms were located in a difference synthesis and refined as riding on their parent atoms in geometrically idealized positions. Because of the short wavelength of synchrotron radiation, all Friedel mates were averaged during data processing. The chirality of the mol­ecule was deduced from the known chiral centres in the substrates used in chemical synthesis.

Table 2. Experimental details.

Crystal data
Chemical formula C20H37N3O4
M r 383.59
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c () 10.85(1), 9.510(9), 11.200(11)
() 94.85(2)
V (3) 1152(2)
Z 2
Radiation type Synchrotron, = 0.6199
(mm1) 0.09
Crystal size (mm) 0.30 0.05 0.02
 
Data collection
Diffractometer MAR300 CCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski et al., 2003)
T min, T max 0.974, 0.999
No. of measured, independent and observed [I > 2(I)] reflections 4561, 4561, 4492
R int 0.049
(sin /)max (1) 0.767
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.041, 0.115, 1.07
No. of reflections 4561
No. of parameters 244
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.44, 0.29

Computer programs: HKL-2000 (Otwinowski Minor, 1997), SHELXD and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windwows (Farrugia, 2012) and pyMOL (DeLano, 2002).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015002091/gk2625sup1.cif

e-71-00254-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002091/gk2625Isup2.hkl

e-71-00254-Isup2.hkl (223.4KB, hkl)

CCDC reference: 1046561

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was in part supported with Federal funds from the National Cancer Institute, under contract No. HHSN261200800E. X-ray data were collected at the SERCAT 19ID beamline of the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the US Department of Energy under contract No. W-31–109-Eng-38.

supplementary crystallographic information

Crystal data

C20H37N3O4 F(000) = 460
Mr = 383.59 Dx = 1.110 Mg m3
Monoclinic, P21 Synchrotron radiation, λ = 0.6199 Å
a = 10.85 (1) Å θ = 1.5–28.4°
b = 9.510 (9) Å µ = 0.09 mm1
c = 11.200 (11) Å T = 100 K
β = 94.85 (2)° Needle, colourless
V = 1152 (2) Å3 0.30 × 0.05 × 0.02 mm
Z = 2

Data collection

MAR300 CCD diffractometer 4561 independent reflections
Radiation source: SER-CAT 22ID synchrotron beamline, APS, USA 4492 reflections with I > 2σ(I)
Si111 double crystal monochromator Rint = 0.049
ω scans θmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) h = 0→16
Tmin = 0.974, Tmax = 0.999 k = 0→14
4561 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.081P)2 + 0.1533P] where P = (Fo2 + 2Fc2)/3
4561 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.44 e Å3
1 restraint Δρmin = −0.29 e Å3

Special details

Experimental. diffraction data were measured at the station 22ID of the APS synchrotron by rotation method a in three sweeps of different exposure and all data were scaled and merged into one data set
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C10 0.26159 (10) 0.47871 (12) 0.27033 (9) 0.01223 (18)
C11 0.14253 (11) 0.53384 (15) 0.20793 (12) 0.0195 (2)
H101 0.1486 0.6359 0.1981 0.029*
H102 0.0737 0.5120 0.2562 0.029*
H103 0.1280 0.4893 0.1291 0.029*
O12 0.27570 (9) 0.35222 (10) 0.29248 (11) 0.02159 (19)
N20 0.34966 (8) 0.57472 (10) 0.29951 (8) 0.01103 (15)
H201 0.3336 0.6633 0.2818 0.013*
C21 0.48033 (9) 0.60494 (11) 0.48414 (8) 0.00972 (16)
O21 0.46004 (9) 0.73127 (9) 0.49827 (7) 0.01513 (16)
C22 0.47046 (9) 0.54014 (11) 0.35897 (8) 0.00941 (16)
H221 0.4804 0.4358 0.3648 0.011*
C23 0.57151 (10) 0.60292 (12) 0.28663 (10) 0.01324 (18)
H231 0.5686 0.5542 0.2083 0.016*
H232 0.5515 0.7031 0.2705 0.016*
C24 0.70443 (11) 0.59414 (15) 0.34574 (12) 0.0197 (2)
H241 0.7063 0.6398 0.4263 0.024*
C25 0.79082 (15) 0.6765 (2) 0.2697 (2) 0.0362 (4)
H251 0.7606 0.7731 0.2589 0.054*
H252 0.7927 0.6312 0.1913 0.054*
H253 0.8744 0.6777 0.3103 0.054*
C26 0.75042 (14) 0.44426 (18) 0.36297 (19) 0.0322 (3)
H261 0.6947 0.3922 0.4114 0.048*
H262 0.8339 0.4450 0.4040 0.048*
H263 0.7524 0.3987 0.2847 0.048*
N30 0.51541 (8) 0.51775 (10) 0.57466 (8) 0.01027 (15)
H301 0.5237 0.4274 0.5606 0.012*
C31 0.65117 (9) 0.49218 (11) 0.75420 (9) 0.01002 (17)
O31 0.64628 (8) 0.36532 (9) 0.77767 (8) 0.01517 (16)
C32 0.53994 (9) 0.57155 (11) 0.69646 (8) 0.00945 (16)
H321 0.5607 0.6738 0.6928 0.011*
C33 0.42768 (10) 0.55287 (12) 0.76899 (9) 0.01255 (18)
H331 0.4034 0.4525 0.7665 0.015*
H332 0.3578 0.6075 0.7299 0.015*
C34 0.44800 (10) 0.59874 (13) 0.90039 (9) 0.01353 (18)
H341 0.5167 0.5408 0.9400 0.016*
C35 0.48372 (15) 0.75302 (16) 0.91469 (12) 0.0239 (3)
H351 0.4956 0.7765 1.0001 0.036*
H352 0.4178 0.8118 0.8759 0.036*
H353 0.5608 0.7701 0.8773 0.036*
C36 0.33127 (12) 0.56946 (18) 0.96323 (11) 0.0233 (3)
H361 0.3442 0.5988 1.0472 0.035*
H362 0.3128 0.4686 0.9594 0.035*
H363 0.2618 0.6221 0.9235 0.035*
N40 0.75393 (9) 0.56824 (11) 0.77879 (9) 0.01460 (17)
H401 0.7556 0.6578 0.7593 0.018*
C41 0.83380 (14) 0.45232 (19) 0.96234 (14) 0.0283 (3)
H411 0.7627 0.4898 0.9949 0.034*
O41 0.89574 (15) 0.3697 (2) 1.02126 (16) 0.0518 (5)
C42 0.86236 (11) 0.50104 (14) 0.83793 (12) 0.0187 (2)
H421 0.8849 0.4177 0.7898 0.022*
C43 0.97094 (12) 0.60363 (17) 0.84929 (13) 0.0235 (2)
H431 1.0416 0.5583 0.8960 0.028*
H432 0.9471 0.6874 0.8945 0.028*
C44 1.01242 (12) 0.65110 (17) 0.72874 (14) 0.0244 (3)
H441 0.9426 0.6996 0.6833 0.029*
H442 1.0805 0.7200 0.7432 0.029*
C45 1.05617 (19) 0.5319 (2) 0.65273 (18) 0.0373 (4)
H451 0.9855 0.4686 0.6307 0.045*
H452 1.1196 0.4770 0.7013 0.045*
C46 1.1102 (2) 0.5807 (3) 0.53884 (19) 0.0458 (5)
H461 1.1363 0.4987 0.4943 0.069*
H462 1.1818 0.6414 0.5597 0.069*
H463 1.0474 0.6333 0.4891 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C10 0.0124 (4) 0.0105 (4) 0.0138 (4) 0.0002 (3) 0.0009 (3) −0.0023 (3)
C11 0.0134 (4) 0.0200 (6) 0.0243 (5) 0.0018 (4) −0.0028 (4) 0.0005 (4)
O12 0.0181 (4) 0.0080 (4) 0.0378 (5) −0.0016 (3) −0.0023 (3) −0.0013 (4)
N20 0.0141 (3) 0.0063 (3) 0.0121 (3) 0.0006 (3) −0.0030 (3) 0.0008 (3)
C21 0.0143 (4) 0.0062 (4) 0.0083 (4) 0.0003 (3) −0.0016 (3) −0.0008 (3)
O21 0.0277 (4) 0.0051 (3) 0.0119 (3) 0.0031 (3) −0.0024 (3) −0.0008 (3)
C22 0.0135 (4) 0.0060 (4) 0.0082 (3) 0.0008 (3) −0.0019 (3) −0.0008 (3)
C23 0.0150 (4) 0.0110 (4) 0.0139 (4) 0.0012 (3) 0.0020 (3) −0.0001 (3)
C24 0.0141 (4) 0.0181 (5) 0.0267 (5) 0.0019 (4) 0.0008 (4) −0.0001 (4)
C25 0.0208 (6) 0.0296 (8) 0.0591 (11) −0.0023 (6) 0.0089 (6) 0.0118 (8)
C26 0.0195 (5) 0.0219 (7) 0.0548 (10) 0.0055 (5) 0.0012 (6) 0.0079 (7)
N30 0.0172 (4) 0.0056 (3) 0.0075 (3) 0.0006 (3) −0.0020 (3) −0.0005 (3)
C31 0.0132 (4) 0.0072 (4) 0.0092 (3) 0.0003 (3) −0.0015 (3) −0.0003 (3)
O31 0.0204 (4) 0.0062 (3) 0.0180 (3) −0.0007 (3) −0.0035 (3) 0.0011 (3)
C32 0.0137 (4) 0.0065 (4) 0.0077 (3) 0.0000 (3) −0.0015 (3) −0.0008 (3)
C33 0.0133 (4) 0.0132 (4) 0.0109 (4) −0.0011 (3) −0.0002 (3) −0.0013 (3)
C34 0.0167 (4) 0.0143 (5) 0.0096 (4) 0.0008 (4) 0.0013 (3) −0.0005 (3)
C35 0.0375 (7) 0.0162 (6) 0.0185 (5) −0.0037 (5) 0.0052 (5) −0.0075 (4)
C36 0.0211 (5) 0.0331 (7) 0.0164 (5) 0.0007 (5) 0.0065 (4) 0.0021 (5)
N40 0.0135 (4) 0.0083 (4) 0.0209 (4) −0.0013 (3) −0.0051 (3) 0.0030 (3)
C41 0.0235 (6) 0.0324 (8) 0.0273 (6) −0.0049 (5) −0.0078 (5) 0.0109 (6)
O41 0.0423 (7) 0.0570 (11) 0.0533 (9) 0.0014 (7) −0.0120 (6) 0.0360 (8)
C42 0.0142 (4) 0.0163 (5) 0.0242 (5) −0.0006 (4) −0.0061 (4) 0.0056 (4)
C43 0.0170 (5) 0.0249 (6) 0.0276 (6) −0.0069 (5) −0.0039 (4) 0.0006 (5)
C44 0.0181 (5) 0.0226 (6) 0.0323 (6) −0.0030 (5) 0.0002 (4) 0.0042 (5)
C45 0.0417 (9) 0.0321 (9) 0.0394 (8) −0.0022 (7) 0.0114 (7) −0.0022 (7)
C46 0.0419 (9) 0.0611 (15) 0.0356 (8) −0.0080 (10) 0.0094 (7) −0.0023 (9)

Geometric parameters (Å, º)

C10—O12 1.2351 (19) C33—C34 1.533 (2)
C10—N20 1.3420 (17) C33—H331 0.9900
C10—C11 1.5097 (19) C33—H332 0.9900
C11—H101 0.9800 C34—C35 1.522 (2)
C11—H102 0.9800 C34—C36 1.526 (2)
C11—H103 0.9800 C34—H341 1.0000
N20—C22 1.4567 (17) C35—H351 0.9800
N20—H201 0.8800 C35—H352 0.9800
C21—O21 1.2340 (18) C35—H353 0.9800
C21—N30 1.3398 (16) C36—H361 0.9800
C21—C22 1.5268 (19) C36—H362 0.9800
C22—C23 1.5380 (18) C36—H363 0.9800
C22—H221 1.0000 N40—C42 1.4489 (17)
C23—C24 1.537 (2) N40—H401 0.8800
C23—H231 0.9900 C41—O41 1.196 (2)
C23—H232 0.9900 C41—C42 1.525 (2)
C24—C26 1.517 (3) C41—H411 0.9500
C24—C25 1.534 (2) C42—C43 1.527 (2)
C24—H241 1.0000 C42—H421 1.0000
C25—H251 0.9800 C43—C44 1.527 (2)
C25—H252 0.9800 C43—H431 0.9900
C25—H253 0.9800 C43—H432 0.9900
C26—H261 0.9800 C44—C45 1.517 (3)
C26—H262 0.9800 C44—H441 0.9900
C26—H263 0.9800 C44—H442 0.9900
N30—C32 1.4602 (18) C45—C46 1.521 (3)
N30—H301 0.8800 C45—H451 0.9900
C31—O31 1.2369 (18) C45—H452 0.9900
C31—N40 1.3380 (16) C46—H461 0.9800
C31—C32 1.5207 (17) C46—H462 0.9800
C32—C33 1.5305 (18) C46—H463 0.9800
C32—H321 1.0000
O12—C10—N20 122.69 (12) C34—C33—H331 108.6
O12—C10—C11 121.19 (11) C32—C33—H332 108.6
N20—C10—C11 116.12 (12) C34—C33—H332 108.6
C10—C11—H101 109.5 H331—C33—H332 107.5
C10—C11—H102 109.5 C35—C34—C36 109.95 (11)
H101—C11—H102 109.5 C35—C34—C33 112.95 (10)
C10—C11—H103 109.5 C36—C34—C33 109.47 (10)
H101—C11—H103 109.5 C35—C34—H341 108.1
H102—C11—H103 109.5 C36—C34—H341 108.1
C10—N20—C22 123.53 (11) C33—C34—H341 108.1
C10—N20—H201 118.2 C34—C35—H351 109.5
C22—N20—H201 118.2 C34—C35—H352 109.5
O21—C21—N30 123.22 (11) H351—C35—H352 109.5
O21—C21—C22 120.75 (9) C34—C35—H353 109.5
N30—C21—C22 116.00 (11) H351—C35—H353 109.5
N20—C22—C21 108.61 (9) H352—C35—H353 109.5
N20—C22—C23 108.99 (10) C34—C36—H361 109.5
C21—C22—C23 109.22 (10) C34—C36—H362 109.5
N20—C22—H221 110.0 H361—C36—H362 109.5
C21—C22—H221 110.0 C34—C36—H363 109.5
C23—C22—H221 110.0 H361—C36—H363 109.5
C24—C23—C22 115.88 (11) H362—C36—H363 109.5
C24—C23—H231 108.3 C31—N40—C42 119.07 (12)
C22—C23—H231 108.3 C31—N40—H401 120.5
C24—C23—H232 108.3 C42—N40—H401 120.5
C22—C23—H232 108.3 O41—C41—C42 123.77 (18)
H231—C23—H232 107.4 O41—C41—H411 118.1
C26—C24—C25 109.90 (13) C42—C41—H411 118.1
C26—C24—C23 113.10 (11) N40—C42—C41 109.39 (12)
C25—C24—C23 109.16 (13) N40—C42—C43 110.32 (13)
C26—C24—H241 108.2 C41—C42—C43 109.45 (11)
C25—C24—H241 108.2 N40—C42—H421 109.2
C23—C24—H241 108.2 C41—C42—H421 109.2
C24—C25—H251 109.5 C43—C42—H421 109.2
C24—C25—H252 109.5 C42—C43—C44 113.48 (12)
H251—C25—H252 109.5 C42—C43—H431 108.9
C24—C25—H253 109.5 C44—C43—H431 108.9
H251—C25—H253 109.5 C42—C43—H432 108.9
H252—C25—H253 109.5 C44—C43—H432 108.9
C24—C26—H261 109.5 H431—C43—H432 107.7
C24—C26—H262 109.5 C45—C44—C43 113.88 (15)
H261—C26—H262 109.5 C45—C44—H441 108.8
C24—C26—H263 109.5 C43—C44—H441 108.8
H261—C26—H263 109.5 C45—C44—H442 108.8
H262—C26—H263 109.5 C43—C44—H442 108.8
C21—N30—C32 120.51 (11) H441—C44—H442 107.7
C21—N30—H301 119.7 C44—C45—C46 113.8 (2)
C32—N30—H301 119.7 C44—C45—H451 108.8
O31—C31—N40 122.24 (11) C46—C45—H451 108.8
O31—C31—C32 121.86 (10) C44—C45—H452 108.8
N40—C31—C32 115.90 (11) C46—C45—H452 108.8
N30—C32—C31 107.38 (9) H451—C45—H452 107.7
N30—C32—C33 111.39 (9) C45—C46—H461 109.5
C31—C32—C33 110.81 (10) C45—C46—H462 109.5
N30—C32—H321 109.1 H461—C46—H462 109.5
C31—C32—H321 109.1 C45—C46—H463 109.5
C33—C32—H321 109.1 H461—C46—H463 109.5
C32—C33—C34 114.85 (10) H462—C46—H463 109.5
C32—C33—H331 108.6
O12—C10—N20—C22 0.51 (17) N40—C31—C32—N30 112.91 (11)
C11—C10—N20—C22 −179.42 (9) O31—C31—C32—C33 54.24 (13)
C10—N20—C22—C21 −113.52 (11) N40—C31—C32—C33 −125.23 (10)
C10—N20—C22—C23 127.58 (11) N30—C32—C33—C34 176.58 (9)
O21—C21—C22—N20 −53.20 (13) C31—C32—C33—C34 57.10 (13)
N30—C21—C22—N20 128.72 (9) C32—C33—C34—C35 59.28 (13)
O21—C21—C22—C23 65.55 (14) C32—C33—C34—C36 −177.85 (10)
N30—C21—C22—C23 −112.52 (11) O31—C31—N40—C42 −1.75 (17)
N20—C22—C23—C24 171.82 (10) C32—C31—N40—C42 177.72 (10)
C21—C22—C23—C24 53.30 (13) C31—N40—C42—C41 −63.52 (15)
C22—C23—C24—C26 64.09 (15) C31—N40—C42—C43 176.03 (11)
C22—C23—C24—C25 −173.23 (12) O41—C41—C42—N40 164.16 (18)
O21—C21—N30—C32 −4.26 (16) O41—C41—C42—C43 −74.9 (2)
C22—C21—N30—C32 173.77 (9) N40—C42—C43—C44 −63.46 (16)
C21—N30—C32—C31 −141.31 (10) C41—C42—C43—C44 176.13 (13)
C21—N30—C32—C33 97.19 (12) C42—C43—C44—C45 −60.78 (18)
O31—C31—C32—N30 −67.62 (13) C43—C44—C45—C46 −173.82 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N20—H201···O31i 0.88 2.05 2.897 (3) 161
N30—H301···O21ii 0.88 1.99 2.863 (3) 171
N40—H401···O12i 0.88 1.96 2.827 (3) 169

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1.

References

  1. Adams, J. (2003). Cancer Treat. Rev. 29 (Suppl. 1), 3–9. [DOI] [PubMed]
  2. Bennett, M. K. & Kirk, C. J. (2008). Curr. Opin. Drug Disc. 11, 616–625. [PubMed]
  3. Borissenko, L. & Groll, M. (2007). Chem. Rev. 107, 687–717. [DOI] [PubMed]
  4. Dahlmann, B. (2007). BMC Biochem. 8 (Suppl. 1), S3. [DOI] [PMC free article] [PubMed]
  5. DeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Frankland-Searby, S. & Bhaumik, S. R. (2012). Biochim. Biophys. Acta, 1825, 64–76. [DOI] [PMC free article] [PubMed]
  8. Genin, E., Reboud-Ravaux, M. & Vidal, J. (2010). Curr. Top. Med. Chem. 10, 232–256. [DOI] [PubMed]
  9. Goldberg, A. L. (2012). J. Cell Biol. 199, 583–588. [DOI] [PMC free article] [PubMed]
  10. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D. & Huber, R. (1997). Nature, 386, 463–471. [DOI] [PubMed]
  11. Groll, M. & Potts, B. C. (2011). Curr. Top. Med. Chem. 11, 2850–2878. [DOI] [PubMed]
  12. Jankowska, E., Stoj, J., Karpowicz, P., Osmulski, P. A. & Gaczynska, M. (2013). Curr. Pharm. Des. 19, 1010–1028. [PubMed]
  13. Kane, R. C., Farrell, A. T., Sridhara, R. & Pazdur, R. (2006). Clin. Cancer Res. 12, 2955–2960. [DOI] [PubMed]
  14. Kisselev, A. F., van der Linden, W. A. & Overkleeft, H. S. (2012). Chem. Biol. 19, 99–115. [DOI] [PMC free article] [PubMed]
  15. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Paul, S. (2008). BioEssays, 30, 1172–1184. [DOI] [PubMed]
  18. Pietsch, M., Chua, K. C. & Abell, A. D. (2010). Curr. Top. Med. Chem. 10, 270–293. [DOI] [PubMed]
  19. Ramakrishnan, C. & Ramachandran, G. N. (1965). Biophys. J. 5, 909–933. [DOI] [PMC free article] [PubMed]
  20. Schaschke, N., Musiol, H. J., Assfalg-Machleidt, I., Machleidt, W., Rudolph-Bohner, S. & Moroder, L. (1996). FEBS Lett. 391, 297–301. [DOI] [PubMed]
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Tsukamoto, S. & Yokosawa, H. (2010). Planta Med. 76, 1064–1074. [DOI] [PubMed]
  23. Zhang, S., Shi, Y., Jin, H., Liu, Z., Zhang, L. & Zhang, L. (2009). J. Mol. Model. 15, 1481–1490. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015002091/gk2625sup1.cif

e-71-00254-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002091/gk2625Isup2.hkl

e-71-00254-Isup2.hkl (223.4KB, hkl)

CCDC reference: 1046561

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES