Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 13;71(Pt 3):272–274. doi: 10.1107/S2056989015002807

Crystal structure and luminescent properties of [1-(biphenyl-4-yl)-1H-imidazole-κN 3]di­chloridozinc

Xiao-Xiao Liu a, Yuan Wang a,*
PMCID: PMC4350720  PMID: 25844185

A new imidazole-based zinc complex, synthesized using hydro­thermal methods, exhibits luminescent behaviour.

Keywords: crystal structure, zinc coordination complex, luminescent properties, π–π inter­actions

Abstract

The mononuclear title compound, [ZnCl2(C15H12N2)2], was synthesized by reaction of zinc chloride and 1-(biphenyl-4-yl)-1H-imidazole (bpi) under hydro­thermal conditions. The ZnII atom is tetra­hedrally coordinated by the free imidazole N atoms of two bpi ligands and by two Cl atoms. The bpi ligands are not planar, with dihedral angles of 37.52 (14) and 42.45 (14)° between the phenyl rings and 37.13 (14) and 40.05 (14)° between the phenyl rings and the attached imidazole rings, respectively. Mutual π–π inter­actions, with a centroid-to-centroid distance of 3.751 (2) Å between the phenyl and imidazole rings of neighbouring ligands, are present, leading to dimers that are arranged in rows parallel to [-211].

Chemical context  

Metal coordination polymers constructed from organic ligands and metal cations have received attention because of their structural diversity and inter­esting physical and chemical properties, including adsorption, mol­ecular separation, heterogeneous catalysis and non-linear optics (Sumida et al., 2012; Colombo et al., 2012; Henke et al., 2012). The development of such materials for various applications is reliant on the functionalities and modulations of the inorganic central atoms and the organic linkers. Materials constructed from d 10 metal ions can be promising photoactive candidates (Lan et al., 2009; Qin et al., 2014). For example, a series of zinc- and cadmium-based coordination polymers were reported to be luminescent sensors for the detection of small organic mol­ecules (Yi et al., 2012; Wang et al., 2013). On the other hand, the choice of the organic ligands or linkers is important for the supra­molecular arrangement.graphic file with name e-71-00272-scheme1.jpg

Among the various organic ligands used for the construction of coordination polymers, nitro­gen-donor species are dominant due to their strong affinities for binding metal atoms (Yang et al., 2013, 2014). In particular, imidazoles are of great inter­est for the construction of zeolite imidazolate frameworks, which exhibit high stability and practical applications (Phan et al., 2010). By further modification of imidazole ligands, various compounds with different structural set-ups have been reported, including one-dimensional, two-dimensional and three-dimensional architectures (Kan et al., 2012). Recently, two one-dimensional imidazole-based zinc complexes were synthesized by using 1,4-di(1H-imidazol-1-yl)benzene (dib), and 1,3,5-tri(1H-imidazol-1-yl)benzene (tib) as ligands (Wang et al., 2014). To obtain further effects on the final structure by modification of the substituent of the imidazoles, 1-(biphenyl-4-yl)-1H-imidazole (bpi) was chosen as ligand and reacted with Zn2+ ions in this work, yielding the title compound ZnCl2(C15H12N2)2, (I). Apart from the structure determination, its photoluminescent property is also reported.

Structural commentary  

As shown in Fig. 1, the asymmetric unit of (I) consists of one zinc(II) cation, two bpi ligands and two chlorine ligands. The cation has a distorted tetra­hedral coordination sphere defined by the free imidazole N atoms and two Cl atoms. The Zn—N and Zn—Cl bond lengths (Table 1) are typical for tetra­hedrally coordinated ZnII. The dihedral angles between the two phenyl rings in the two bpi ligands are 37.52 (14) and 42.45 (14)°, respectively, while the dihedral angles between the phenyl rings and the attached imidazole rings are 37.13 (14) and 40.05 (14)°.

Figure 1.

Figure 1

The mol­ecular structure of compound (I). Displacement ellipsoids were drawn at the 30% probability level.

Table 1. Selected bond lengths ().

Zn1N1 2.021(2) Zn1Cl1 2.2258(7)
Zn1N3 2.028(2) Zn1Cl2 2.2447(8)

ZnII-based compounds with metal-organic framework structures are well-known for their luminescence properties. The photoluminescence spectrum of compound (I) in the solid state is shown in Fig. 2. On excitation at 278 nm, the emission band is centred at 350 nm. Compared to the free bpi ligand, which exhibits one main fluorescent emission band around 400 nm when excited at 271 nm, the emission band of complex (I) is about 50 nm hypochromatically shifted. Considering metal atoms with a d 10 electron configuration and the bonding inter­actions with the ligand, such broad emission bands may be assigned to a ligand-to-ligand charge transfer (LLCT), admixing with metal-to-ligand (MLCT) and ligand-to-metal (LMCT) charge transfers (Gong et al., 2011).

Figure 2.

Figure 2

Excitation and emission spectra of compound (I) in the solid state.

Supra­molecular features  

As mentioned before, the imidazole-based ligands dib and tib, featuring two and three imidazole rings, respectively, can adopt different structural dimensionalities. The bpi ligand used in this study, however, has only one available N-donor, thus preventing the formation of a polymeric structure. Nevertheless, there are weak inter­molecular π–π stacking inter­actions between single mol­ecules in the crystal packing. The terminal phenyl ring and the imidazole ring of a neighbouring ligand are tilted to each other by 11.72 (17)°, with a centroid-to-centroid distance of 3.751 (2) Å (Fig. 3).

Figure 3.

Figure 3

View of the crystal structure along [010] emphasizing π–π inter­actions (dotted lines and inset).

Synthesis and crystallization  

All chemicals were purchased commercially and used without further purification. A mixture of ZnCl2 (81.6 mg, 5 mmol), bpi (130 mg, 0.6 mmol), and de-ionized water (9 ml) was loaded into a 20 ml Teflon-lined stainless steel autoclave. The autoclave was sealed and heated at 423 K for 5 d, and then cooled to room temperature by switching off the furnace. Colourless block-shaped crystals were isolated, which were filtered off and washed with de-ionized water. The final product was dried at ambient temperature (yield 75% based on zinc). Analysis calculated (wt%) for ZnCl2(C15H12N2)2: C, 62.47; H, 4.19; N, 9.71. Found: C, 62.45; H, 4.15; N, 9.79.

Elemental analyses of C, H, and N were conducted on a Perkin–Elmer 2400 elemental analyser. The photoluminescence (PL) excitation and emission spectra were recorded with an F-7000 luminescence spectrometer equipped with a xenon lamp of 450 W as an excitation light source. The photomultiplier tube voltage was 400 V, the scan speed was 1200 nm min−1, both the excitation and the emission slit widths were 5.0 nm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were positioned geometrically with C—H = 0.93 Å and U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [ZnCl2(C15H12N2)2]
M r 576.80
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c () 9.2410(6), 9.2595(5), 16.4106(10)
, , () 87.770(1), 88.819(1), 72.823(1)
V (3) 1340.50(14)
Z 2
Radiation type Mo K
(mm1) 1.14
Crystal size (mm) 0.40 0.30 0.30
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.658, 0.726
No. of measured, independent and observed [I > 2(I)] reflections 8564, 5308, 4067
R int 0.025
(sin /)max (1) 0.619
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.037, 0.091, 1.00
No. of reflections 5308
No. of parameters 334
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.31, 0.35

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015002807/wm5118sup1.cif

e-71-00272-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002807/wm5118Isup2.hkl

e-71-00272-Isup2.hkl (259.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015002807/wm5118Isup3.mol

CCDC reference: 1048515

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[ZnCl2(C15H12N2)2] Z = 2
Mr = 576.80 F(000) = 592
Triclinic, P1 #Added by publCIF_symmetry_space_group_name_hall '-P 1' #Added by publCIF_audit_update_record
Hall symbol: -P 1 Dx = 1.429 Mg m3
a = 9.2410 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2595 (5) Å Cell parameters from 2594 reflections
c = 16.4106 (10) Å θ = 2.3–24.3°
α = 87.770 (1)° µ = 1.14 mm1
β = 88.819 (1)° T = 296 K
γ = 72.823 (1)° Block, colourless
V = 1340.50 (14) Å3 0.40 × 0.30 × 0.30 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 5308 independent reflections
Radiation source: fine-focus sealed tube 4067 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
phi and ω scans θmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→11
Tmin = 0.658, Tmax = 0.726 k = −11→11
8564 measured reflections l = −20→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3283P] where P = (Fo2 + 2Fc2)/3
5308 reflections (Δ/σ)max = 0.014
334 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.49124 (3) 1.09677 (3) 0.333749 (18) 0.04334 (11)
N3 0.5776 (2) 0.8683 (2) 0.33926 (13) 0.0451 (5)
N1 0.2746 (2) 1.1586 (2) 0.37469 (13) 0.0472 (5)
N2 0.0780 (2) 1.2196 (2) 0.45740 (13) 0.0452 (5)
N4 0.6993 (2) 0.6477 (2) 0.28944 (12) 0.0418 (5)
C28 0.6686 (3) 0.7984 (3) 0.28125 (16) 0.0466 (6)
H28A 0.7072 0.8475 0.2395 0.056*
C25 0.7889 (3) 0.5422 (3) 0.23310 (15) 0.0414 (6)
C10 −0.0104 (3) 1.2386 (3) 0.53170 (16) 0.0456 (6)
C7 −0.1776 (3) 1.2747 (3) 0.67615 (16) 0.0452 (6)
C22 0.9495 (3) 0.3553 (3) 0.11331 (15) 0.0420 (6)
C30 0.6209 (3) 0.6192 (3) 0.35697 (16) 0.0475 (6)
H30A 0.6190 0.5249 0.3778 0.057*
C26 0.7462 (3) 0.4182 (3) 0.21310 (17) 0.0476 (6)
H26A 0.6641 0.3970 0.2391 0.057*
C12 −0.0612 (3) 1.1433 (3) 0.66213 (17) 0.0506 (7)
H12A −0.0385 1.0662 0.7021 0.061*
C27 0.8274 (3) 0.3254 (3) 0.15356 (17) 0.0487 (7)
H27A 0.7994 0.2407 0.1401 0.058*
C16 1.0323 (3) 0.2598 (3) 0.04652 (16) 0.0453 (6)
C24 0.9140 (3) 0.5714 (3) 0.19650 (16) 0.0483 (7)
H24A 0.9449 0.6530 0.2122 0.058*
C23 0.9918 (3) 0.4791 (3) 0.13708 (17) 0.0477 (6)
H23A 1.0750 0.4999 0.1120 0.057*
C6 −0.3160 (3) 1.4297 (3) 0.79101 (18) 0.0519 (7)
H6A −0.2935 1.5135 0.7674 0.062*
C29 0.5470 (3) 0.7554 (3) 0.38738 (16) 0.0492 (6)
H29A 0.4851 0.7704 0.4336 0.059*
C11 0.0216 (3) 1.1242 (3) 0.59019 (17) 0.0523 (7)
H11A 0.0983 1.0349 0.5816 0.063*
C1 −0.2672 (3) 1.2918 (3) 0.75330 (16) 0.0447 (6)
C14 0.1475 (3) 1.2263 (3) 0.33028 (18) 0.0524 (7)
H14A 0.1455 1.2434 0.2740 0.063*
C8 −0.2076 (3) 1.3875 (3) 0.61520 (17) 0.0517 (7)
H8A −0.2861 1.4759 0.6226 0.062*
C9 −0.1236 (3) 1.3713 (3) 0.54385 (17) 0.0509 (7)
H9A −0.1432 1.4493 0.5044 0.061*
C2 −0.3043 (3) 1.1702 (3) 0.78962 (17) 0.0549 (7)
H2A −0.2725 1.0767 0.7655 0.066*
C17 0.9543 (4) 0.2104 (3) −0.01281 (18) 0.0578 (7)
H17A 0.8490 0.2377 −0.0108 0.069*
C15 0.2278 (3) 1.1556 (3) 0.45106 (17) 0.0511 (7)
H15A 0.2907 1.1144 0.4948 0.061*
C5 −0.3974 (3) 1.4436 (3) 0.86282 (19) 0.0605 (8)
H5A −0.4282 1.5365 0.8876 0.073*
C4 −0.4337 (4) 1.3225 (4) 0.89823 (19) 0.0631 (8)
H4A −0.4887 1.3327 0.9468 0.076*
C21 1.1894 (3) 0.2188 (3) 0.0417 (2) 0.0629 (8)
H21A 1.2441 0.2516 0.0802 0.075*
C13 0.0260 (3) 1.2647 (3) 0.38006 (17) 0.0550 (7)
H13A −0.0737 1.3123 0.3650 0.066*
C3 −0.3876 (4) 1.1852 (3) 0.86102 (19) 0.0648 (8)
H3A −0.4127 1.1025 0.8842 0.078*
C19 1.1853 (5) 0.0807 (4) −0.0781 (2) 0.0785 (11)
H19A 1.2369 0.0203 −0.1197 0.094*
C18 1.0313 (5) 0.1212 (4) −0.07452 (19) 0.0727 (10)
H18A 0.9780 0.0887 −0.1138 0.087*
C20 1.2645 (4) 0.1285 (4) −0.0208 (2) 0.0775 (11)
H20A 1.3697 0.1002 −0.0237 0.093*
Cl2 0.62413 (8) 1.20582 (8) 0.41117 (4) 0.05347 (18)
Cl1 0.49053 (9) 1.16111 (8) 0.20162 (4) 0.05715 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.04203 (18) 0.03878 (17) 0.04857 (19) −0.01084 (13) 0.00502 (13) −0.00512 (13)
N3 0.0478 (13) 0.0386 (11) 0.0492 (13) −0.0136 (10) 0.0045 (10) −0.0034 (10)
N1 0.0405 (12) 0.0491 (13) 0.0514 (14) −0.0122 (10) 0.0002 (10) −0.0024 (10)
N2 0.0361 (12) 0.0470 (12) 0.0510 (13) −0.0098 (10) 0.0007 (10) −0.0006 (10)
N4 0.0441 (12) 0.0333 (11) 0.0476 (12) −0.0112 (9) 0.0013 (10) 0.0004 (9)
C28 0.0508 (16) 0.0366 (13) 0.0524 (16) −0.0137 (12) 0.0069 (13) 0.0018 (12)
C25 0.0402 (14) 0.0333 (13) 0.0488 (15) −0.0083 (11) −0.0012 (11) 0.0006 (11)
C10 0.0345 (14) 0.0473 (15) 0.0549 (16) −0.0118 (12) 0.0042 (12) −0.0041 (12)
C7 0.0384 (14) 0.0457 (15) 0.0540 (16) −0.0163 (12) 0.0006 (12) −0.0039 (12)
C22 0.0388 (14) 0.0367 (13) 0.0499 (15) −0.0105 (11) −0.0033 (12) 0.0017 (11)
C30 0.0550 (16) 0.0392 (14) 0.0508 (16) −0.0186 (13) 0.0026 (13) 0.0049 (12)
C26 0.0426 (15) 0.0400 (14) 0.0636 (18) −0.0178 (12) 0.0088 (13) −0.0035 (12)
C12 0.0483 (16) 0.0429 (15) 0.0568 (17) −0.0083 (13) 0.0007 (13) 0.0026 (12)
C27 0.0476 (16) 0.0387 (14) 0.0646 (18) −0.0195 (12) 0.0011 (13) −0.0077 (12)
C16 0.0488 (16) 0.0374 (13) 0.0482 (15) −0.0112 (12) 0.0033 (12) 0.0020 (11)
C24 0.0478 (16) 0.0431 (14) 0.0598 (17) −0.0223 (13) −0.0003 (13) −0.0035 (13)
C23 0.0400 (14) 0.0460 (15) 0.0603 (17) −0.0182 (12) 0.0048 (13) −0.0004 (13)
C6 0.0478 (16) 0.0455 (15) 0.0633 (18) −0.0151 (13) 0.0034 (14) −0.0039 (13)
C29 0.0498 (16) 0.0513 (16) 0.0484 (16) −0.0184 (13) 0.0058 (12) −0.0016 (12)
C11 0.0436 (16) 0.0441 (15) 0.0628 (18) −0.0031 (13) 0.0034 (13) −0.0052 (13)
C1 0.0380 (14) 0.0466 (15) 0.0510 (16) −0.0146 (12) −0.0003 (12) −0.0032 (12)
C14 0.0519 (17) 0.0507 (16) 0.0526 (16) −0.0129 (14) −0.0004 (14) 0.0039 (13)
C8 0.0433 (15) 0.0426 (15) 0.0662 (18) −0.0085 (12) 0.0074 (14) −0.0018 (13)
C9 0.0437 (15) 0.0459 (15) 0.0603 (18) −0.0102 (13) 0.0029 (13) 0.0061 (13)
C2 0.0579 (18) 0.0512 (16) 0.0600 (18) −0.0225 (14) 0.0058 (14) −0.0088 (14)
C17 0.0657 (19) 0.0519 (17) 0.0575 (18) −0.0206 (15) −0.0001 (15) 0.0018 (14)
C15 0.0357 (14) 0.0621 (17) 0.0521 (17) −0.0091 (13) −0.0019 (12) −0.0029 (13)
C5 0.0566 (18) 0.0575 (18) 0.067 (2) −0.0145 (15) 0.0041 (15) −0.0157 (15)
C4 0.065 (2) 0.072 (2) 0.0553 (18) −0.0240 (17) 0.0111 (15) −0.0064 (16)
C21 0.0498 (18) 0.0642 (19) 0.070 (2) −0.0103 (15) 0.0076 (15) 0.0011 (16)
C13 0.0379 (15) 0.0604 (18) 0.0594 (18) −0.0042 (13) −0.0067 (13) 0.0069 (14)
C3 0.072 (2) 0.0609 (19) 0.066 (2) −0.0288 (17) 0.0101 (17) 0.0021 (15)
C19 0.116 (3) 0.0500 (19) 0.064 (2) −0.019 (2) 0.038 (2) −0.0033 (16)
C18 0.112 (3) 0.0595 (19) 0.0515 (19) −0.033 (2) 0.0074 (19) −0.0057 (15)
C20 0.066 (2) 0.061 (2) 0.092 (3) −0.0024 (18) 0.033 (2) 0.0075 (19)
Cl2 0.0559 (4) 0.0533 (4) 0.0553 (4) −0.0217 (3) −0.0010 (3) −0.0073 (3)
Cl1 0.0716 (5) 0.0505 (4) 0.0496 (4) −0.0188 (4) 0.0034 (3) 0.0002 (3)

Geometric parameters (Å, º)

Zn1—N1 2.021 (2) C16—C17 1.391 (4)
Zn1—N3 2.028 (2) C24—C23 1.368 (3)
Zn1—Cl1 2.2258 (7) C24—H24A 0.9300
Zn1—Cl2 2.2447 (8) C23—H23A 0.9300
N3—C28 1.314 (3) C6—C5 1.374 (4)
N3—C29 1.377 (3) C6—C1 1.388 (4)
N1—C15 1.319 (3) C6—H6A 0.9300
N1—C14 1.367 (3) C29—H29A 0.9300
N2—C15 1.339 (3) C11—H11A 0.9300
N2—C13 1.372 (3) C1—C2 1.381 (4)
N2—C10 1.441 (3) C14—C13 1.343 (4)
N4—C28 1.341 (3) C14—H14A 0.9300
N4—C30 1.371 (3) C8—C9 1.380 (4)
N4—C25 1.434 (3) C8—H8A 0.9300
C28—H28A 0.9300 C9—H9A 0.9300
C25—C26 1.373 (3) C2—C3 1.377 (4)
C25—C24 1.384 (3) C2—H2A 0.9300
C10—C11 1.370 (4) C17—C18 1.379 (4)
C10—C9 1.376 (3) C17—H17A 0.9300
C7—C12 1.389 (3) C15—H15A 0.9300
C7—C8 1.388 (4) C5—C4 1.367 (4)
C7—C1 1.486 (3) C5—H5A 0.9300
C22—C27 1.388 (3) C4—C3 1.379 (4)
C22—C23 1.388 (3) C4—H4A 0.9300
C22—C16 1.486 (3) C21—C20 1.388 (4)
C30—C29 1.353 (4) C21—H21A 0.9300
C30—H30A 0.9300 C13—H13A 0.9300
C26—C27 1.382 (3) C3—H3A 0.9300
C26—H26A 0.9300 C19—C18 1.361 (5)
C12—C11 1.382 (4) C19—C20 1.366 (5)
C12—H12A 0.9300 C19—H19A 0.9300
C27—H27A 0.9300 C18—H18A 0.9300
C16—C21 1.390 (4) C20—H20A 0.9300
N1—Zn1—N3 110.09 (9) C5—C6—C1 120.7 (3)
N1—Zn1—Cl1 108.12 (7) C5—C6—H6A 119.7
N3—Zn1—Cl1 105.05 (6) C1—C6—H6A 119.7
N1—Zn1—Cl2 107.94 (7) C30—C29—N3 109.4 (2)
N3—Zn1—Cl2 111.23 (7) C30—C29—H29A 125.3
Cl1—Zn1—Cl2 114.33 (3) N3—C29—H29A 125.3
C28—N3—C29 105.4 (2) C10—C11—C12 119.2 (2)
C28—N3—Zn1 120.15 (17) C10—C11—H11A 120.4
C29—N3—Zn1 133.74 (17) C12—C11—H11A 120.4
C15—N1—C14 105.6 (2) C2—C1—C6 118.0 (2)
C15—N1—Zn1 127.00 (18) C2—C1—C7 120.7 (2)
C14—N1—Zn1 127.06 (19) C6—C1—C7 121.3 (2)
C15—N2—C13 106.9 (2) C13—C14—N1 109.8 (2)
C15—N2—C10 126.2 (2) C13—C14—H14A 125.1
C13—N2—C10 126.9 (2) N1—C14—H14A 125.1
C28—N4—C30 106.8 (2) C9—C8—C7 121.5 (2)
C28—N4—C25 124.6 (2) C9—C8—H8A 119.3
C30—N4—C25 128.4 (2) C7—C8—H8A 119.3
N3—C28—N4 111.9 (2) C10—C9—C8 119.3 (3)
N3—C28—H28A 124.0 C10—C9—H9A 120.3
N4—C28—H28A 124.0 C8—C9—H9A 120.3
C26—C25—C24 120.8 (2) C3—C2—C1 121.1 (3)
C26—C25—N4 120.1 (2) C3—C2—H2A 119.5
C24—C25—N4 119.0 (2) C1—C2—H2A 119.5
C11—C10—C9 120.8 (2) C18—C17—C16 120.7 (3)
C11—C10—N2 119.1 (2) C18—C17—H17A 119.6
C9—C10—N2 120.0 (2) C16—C17—H17A 119.6
C12—C7—C8 117.5 (2) N1—C15—N2 111.3 (2)
C12—C7—C1 120.8 (2) N1—C15—H15A 124.4
C8—C7—C1 121.7 (2) N2—C15—H15A 124.4
C27—C22—C23 117.6 (2) C4—C5—C6 120.8 (3)
C27—C22—C16 121.7 (2) C4—C5—H5A 119.6
C23—C22—C16 120.6 (2) C6—C5—H5A 119.6
C29—C30—N4 106.4 (2) C5—C4—C3 119.2 (3)
C29—C30—H30A 126.8 C5—C4—H4A 120.4
N4—C30—H30A 126.8 C3—C4—H4A 120.4
C25—C26—C27 118.8 (2) C16—C21—C20 119.7 (3)
C25—C26—H26A 120.6 C16—C21—H21A 120.2
C27—C26—H26A 120.6 C20—C21—H21A 120.2
C11—C12—C7 121.6 (3) C14—C13—N2 106.4 (2)
C11—C12—H12A 119.2 C14—C13—H13A 126.8
C7—C12—H12A 119.2 N2—C13—H13A 126.8
C26—C27—C22 121.7 (2) C2—C3—C4 120.2 (3)
C26—C27—H27A 119.1 C2—C3—H3A 119.9
C22—C27—H27A 119.1 C4—C3—H3A 119.9
C21—C16—C17 118.5 (3) C18—C19—C20 120.3 (3)
C21—C16—C22 120.6 (3) C18—C19—H19A 119.9
C17—C16—C22 120.8 (2) C20—C19—H19A 119.9
C23—C24—C25 119.4 (2) C19—C18—C17 120.1 (3)
C23—C24—H24A 120.3 C19—C18—H18A 119.9
C25—C24—H24A 120.3 C17—C18—H18A 119.9
C24—C23—C22 121.5 (2) C19—C20—C21 120.7 (3)
C24—C23—H23A 119.2 C19—C20—H20A 119.7
C22—C23—H23A 119.2 C21—C20—H20A 119.7

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker, (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., Barea, E. & Navarro, J. A. R. (2012). J. Am. Chem. Soc. 134, 12830–12843. [DOI] [PubMed]
  4. Gong, Y., Li, J., Qin, J.-B., Wu, T., Cao, R. & Li, J.-H. (2011). Cryst. Growth Des. 11, 1662–1674.
  5. Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. (2012). J. Am. Chem. Soc. 134, 9464–9474. [DOI] [PubMed]
  6. Kan, W. Q., Yang, J., Liu, Y. Y. & Ma, J. F. (2012). CrystEngComm, 14, 6934–6945.
  7. Lan, A., Li, K., Wu, H., Olson, D. H., Emge, T. J., Ki, W., Hong, M. & Li, J. (2009). Angew. Chem. Int. Ed. 48, 2334–2338. [DOI] [PubMed]
  8. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M. & Yaghi, O. M. (2010). Acc. Chem. Res. 43, 58–67. [DOI] [PubMed]
  9. Qin, J. S., Zhang, S. R., Du, D. Y., Shen, P., Bao, S. J., Lan, Y. Q. & Su, Z. M. (2014). Chem. Eur. J. 20, 5625–5630. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. (2012). Chem. Rev. 112, 724–781. [DOI] [PubMed]
  12. Wang, H., Yang, X. Y., Ma, Y. Q., Cui, W. B., Li, Y. H., Tian, W. G., Yao, S., Gao, Y., Dang, S. & Zhu, W. (2014). Inorg. Chim. Acta, 416, 63–68.
  13. Wang, H., Yang, W. T. & Sun, Z. M. (2013). Chem. Asian J. 8, 982–989. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Yang, W. T., Yi, F. Y., Li, X. D., Wang, L., Dang, S. & Sun, Z. M. (2013). RSC Adv. 3, 25065–25070.
  16. Yang, W., Yi, F. Y., Tian, T., Tian, W. G. & Sun, Z. M. (2014). Cryst. Growth Des. 14, 1366–1374.
  17. Yi, F. Y., Yang, W. T. & Sun, Z. M. (2012). J. Mater. Chem. 22, 23201–23209.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015002807/wm5118sup1.cif

e-71-00272-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002807/wm5118Isup2.hkl

e-71-00272-Isup2.hkl (259.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015002807/wm5118Isup3.mol

CCDC reference: 1048515

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES