Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 7;71(Pt 3):258–260. doi: 10.1107/S2056989015002078

Crystal structure of 1,1′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(naphthalen-2-ol)

Augusto Rivera a,*, Jicli José Rojas a, Jaime Ríos-Motta a, Michael Bolte b
PMCID: PMC4350733  PMID: 25844181

The crystal structure of the title compound displays a twist conformation of the imidazolidine ring with two (2-hy­droxy­naphthalen-1-yl)methyl substituents stabilized by two intra­molecular O—H⋯N hydrogen bonds.

Keywords: crystal structure, imadazolidine, (2-hy­droxy­naphthalen-1-yl)meth­yl, hydrogen bonding

Abstract

The crystal structure of the title compound, C25H24N2O2, at 173 K has monoclinic (C2/c) symmetry. The mol­ecule is located on a crystallographic twofold rotation axis with only half a mol­ecule in the asymmetric unit. The imidazolidine ring adopts a twist conformation, with a twist about the ring C—C bond. The crystal structure shows the anti­clinal disposition of the two (2-hy­droxy­naphthalen-1-yl)methyl substituents of the imidazolidine ring. The structure displays two intra­molecular O—H⋯N hydrogen bonds, each forming an S(6) ring motif.

Chemical context  

We have been inter­ested in the synthesis and characterization of a family of symmetrical N,N′-disubstituted imidazolidines by the use of a Mannich-type condensation of cyclic cage aminals with phenols in a one-pot reaction. The main structural feature of the symmetrical N,N′-disubstituted imidazolidines, the so-called aromatic di-Mannich bases, is to form intra­molecular hydrogen bonds that reveal great structural and thermodynamic stability. These di-Mannich bases which contain a phenolic or naphtho­lic hydroxyl group as a proton donor, as well as an ortho-amino­methyl group as a proton acceptor in the same mol­ecule are convenient models for studying the nature of hydrogen bonding and other weak non-covalent inter­actions (Koll et al., 2006).graphic file with name e-71-00258-scheme1.jpg

In previous studies (Rivera et al., 2006), 1,1′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(naphthalen-2-ol), (I), was obtained in good yields by an one-pot Mannich-type reaction involving 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) and naph­thalen-2-ol in classical solvents for Mannich reactions, such as dioxane or ethanol. Intriguingly, reactions of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) with naphthalen-2-ol may lead to other results. It has been found (Rivera & Quevedo, 2013) that inter­action of TATD with naphthalen-2-ol in solvent-free conditions by heating in an oil bath a 1:4 mixture with stirring at 423 K for 20 min gives 1,1′-methyl­enebis(naphthalen-2-ol) in good yields. On the other hand, the reactions of TATD with naphthalen-2-ol under solvent-free microwave-assisted conditions yields the title compound and no formation of 1,1′-methyl­enebis(naphthalen-2-ol) was observed. In contrast to classical Mannich reaction conditions this reaction required neither solvent nor inert atmosphere conditions.

Structural commentary  

In contrast to the closely related structure (Rivera et al., 2012a ), which crystallized in the monoclinic P21/n space group, the title compound crystallizes in the C2/c space group. The mol­ecular structure is shown in Fig. 1. The asymmetric unit contains one half mol­ecule and the whole mol­ecule is generated by twofold rotational symmetry (see Fig. 1). The near planarity of the fused aromatic ring system is illustrated by the very small deviation of all the atoms from the plane [largest deviation = 0.0227 (17) Å for atom C11]. The imidazolidine ring (C1/N1/C2/C2′/N1′) is in a twisted conformation on C2—C2′, with puckering parameters Q(2) = 0.4126 (17) Å and ϕ(2) = 126.0 (2)° (Cremer & Pople, 1975). The crystal structure shows the anti­clinal disposition of the two (2-hy­droxy­naphthalen-1-yl)methyl substituents of the imidazolidine ring [pseudo-torsion angle CH2—N⋯N—CH2 = −121.77 (18)°]. The mean plane of the imidazolidine ring, defined by atoms N1, C1 and N1′, makes a dihedral angle of 70.92 (4)° with the pendant aromatic rings (C11–C20). The dihedral angle between the planes of the naphthyl rings is 60.55 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix ‘A’ are generated using the symmetry operator (−x + 1, y, −z + Inline graphic).

As with related structures in this series, the mol­ecular conformation is stabilized by two intra­molecular O—H⋯N hydrogen-bond inter­actions with S(6) graph-set motifs (Bernstein et al., 1995). Due to symmetry and contrary to other structures, where hydrogen-bond distances were different, the two observed intra­molecular hydrogen-bond distances were identical (Table 1).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N1 1.05(2) 1.65(2) 2.6143(19) 151.0(19)
C2H2AO1i 0.99 2.64 3.257(2) 121

Symmetry code: (i) Inline graphic.

Supra­molecular features  

Unlike the situation found in related structures, there is only one significant inter­molecular inter­action involving the O—H group (as acceptor) and a methyl­ene-H atom (as donor) to consolidate the crystal packing. These weak inter­actions led to the formation of parallel sets of zigzag chains extending along the c axis of the crystal (Fig. 2).

Figure 2.

Figure 2

The crystal packing of the title compound, howing one of the zigzag chains that extend along the crystal c-axis direction. Hydrogen bonds are drawn as dashed lines.

Database survey  

A search in the Cambridge Structural Database (Groom & Allen, 2014) for the fragment 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol yielded seven hits, namely 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(4-tert-butyl­phenol) (Rivera, Nerio & Bolte, 2013), 2,2′-[imidazolidine-1,3-diyl­bis(methyl­ene)]bis­(4-chloro­phenol) (Rivera et al., 2011), 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­[4-(2,4,4-tri­methyl­pen­tan-2-yl)phenol] (Kober et al., 2012), 4,4′-di­fluoro-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol (Rivera et al., 2012b ) 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]bis­(6-methyl­phenol) (Rivera et al., 2014), 2,2′-[imidazolidine-1,3-diyl­bis(methyl­ene)]diphenol (Rivera et al., 2012b ) and 4,4′-di­methyl-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol (Rivera et al., 2012c ). In all of these compounds, the hy­droxy groups in the ortho position of the aromatic ring form an intra­molecular hydrogen bond to an N atom of the imidazoline ring.

Synthesis and crystallization  

The title compound has been synthesized in solution according to a literature procedure (Rivera et al., 2006); however, in this instance, the synthesis was carried out under microwave-assisted solvent free conditions. A mixture of 1 mmol of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) and 2 mmol of naphthalen-2-ol was subjected to microwave irradiation (200 W) for 10 min at a temperature of 373 K. The product was washed with water and then with benzene (yield 94%, m.p. 435–436 K). Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in the difference electron-density map. The hy­droxy H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding model, with U iso(H) values set at 1.2U eq of the parent atom.

Table 2. Experimental details.

Crystal data
Chemical formula C25H24N2O2
M r 384.46
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c () 34.883(5), 8.3956(9), 6.5830(8)
() 95.650(11)
V (3) 1918.6(4)
Z 4
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.19 0.17 0.11
 
Data collection
Diffractometer Stoe IPDS II two circle
Absorption correction Multi-scan (X-AREA; Stoe Cie, 2001)
T min, T max 0.972, 0.989
No. of measured, independent and observed [I > 2(I)] reflections 8297, 1852, 1451
R int 0.090
(sin /)max (1) 0.616
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.055, 0.159, 1.09
No. of reflections 1852
No. of parameters 136
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.24, 0.23

Computer programs: X-AREA (Stoe Cie, 2001), SHELXS97 and XP (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015002078/sj5441sup1.cif

e-71-00258-sup1.cif (296.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002078/sj5441Isup2.hkl

e-71-00258-Isup2.hkl (102.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015002078/sj5441Isup3.cml

CCDC reference: 1046536

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support provided to us by the Dirección de Investigación, Sede Bogotá (DIB) at the Universidad Nacional de Colombia through the research project No. 19151 (Code QUIPU 201010020518). JJR thanks COLCIENCIAS for a fellowship.

supplementary crystallographic information

Crystal data

C25H24N2O2 F(000) = 816
Mr = 384.46 Dx = 1.331 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 34.883 (5) Å Cell parameters from 8026 reflections
b = 8.3956 (9) Å θ = 2.4–26.2°
c = 6.5830 (8) Å µ = 0.09 mm1
β = 95.650 (11)° T = 173 K
V = 1918.6 (4) Å3 Block, colourless
Z = 4 0.19 × 0.17 × 0.11 mm

Data collection

Stoe IPDS II two-circle diffractometer 1451 reflections with I > 2σ(I)
ω scans Rint = 0.090
Absorption correction: multi-scan X-AREA (Stoe & Cie, 2001) θmax = 26.0°, θmin = 2.5°
Tmin = 0.972, Tmax = 0.989 h = −42→34
8297 measured reflections k = −10→10
1852 independent reflections l = −8→8

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.085P)2 + 0.4089P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1852 reflections Δρmax = 0.24 e Å3
136 parameters Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.45368 (4) 0.77294 (16) 0.70176 (19) 0.0507 (4)
H1 0.4677 (6) 0.723 (3) 0.583 (4) 0.061 (6)*
N1 0.47179 (4) 0.69601 (18) 0.3384 (2) 0.0455 (4)
C1 0.5000 0.5948 (4) 0.2500 0.0627 (8)
H1A 0.5132 0.5258 0.3570 0.075* 0.5
H1B 0.4868 0.5258 0.1430 0.075* 0.5
C2 0.47856 (5) 0.8543 (2) 0.2548 (2) 0.0488 (5)
H2A 0.4707 0.9396 0.3459 0.059*
H2B 0.4646 0.8678 0.1175 0.059*
C3 0.43203 (5) 0.6374 (2) 0.2997 (3) 0.0491 (5)
H3A 0.4319 0.5212 0.3249 0.059*
H3B 0.4231 0.6549 0.1540 0.059*
C11 0.40403 (5) 0.7157 (2) 0.4287 (2) 0.0437 (4)
C12 0.41619 (5) 0.7796 (2) 0.6188 (2) 0.0446 (4)
C13 0.38994 (6) 0.8541 (2) 0.7379 (3) 0.0511 (5)
H13 0.3990 0.8993 0.8660 0.061*
C14 0.35197 (6) 0.8623 (2) 0.6724 (3) 0.0541 (5)
H14 0.3348 0.9149 0.7536 0.065*
C15 0.33758 (5) 0.7931 (2) 0.4833 (3) 0.0499 (5)
C16 0.29795 (6) 0.7964 (3) 0.4150 (3) 0.0611 (6)
H16 0.2805 0.8489 0.4948 0.073*
C17 0.28426 (6) 0.7252 (3) 0.2355 (3) 0.0682 (6)
H17 0.2575 0.7286 0.1910 0.082*
C18 0.30975 (6) 0.6476 (3) 0.1178 (3) 0.0662 (6)
H18 0.3001 0.5965 −0.0055 0.079*
C19 0.34828 (6) 0.6438 (3) 0.1770 (3) 0.0545 (5)
H19 0.3650 0.5908 0.0938 0.065*
C20 0.36387 (5) 0.7181 (2) 0.3618 (2) 0.0455 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0588 (8) 0.0562 (8) 0.0367 (6) −0.0007 (6) 0.0024 (5) −0.0039 (5)
N1 0.0551 (9) 0.0469 (8) 0.0350 (7) 0.0057 (6) 0.0072 (6) −0.0001 (6)
C1 0.0688 (18) 0.0559 (17) 0.0670 (17) 0.000 0.0256 (14) 0.000
C2 0.0617 (11) 0.0505 (11) 0.0342 (8) 0.0027 (8) 0.0047 (7) 0.0023 (7)
C3 0.0615 (12) 0.0496 (10) 0.0364 (8) −0.0001 (8) 0.0061 (7) −0.0058 (7)
C11 0.0590 (11) 0.0412 (9) 0.0318 (8) 0.0009 (8) 0.0086 (7) 0.0016 (6)
C12 0.0574 (11) 0.0438 (10) 0.0331 (8) −0.0026 (7) 0.0067 (7) 0.0024 (6)
C13 0.0676 (12) 0.0525 (11) 0.0342 (8) −0.0042 (9) 0.0098 (8) −0.0063 (7)
C14 0.0667 (12) 0.0548 (11) 0.0436 (9) 0.0030 (9) 0.0192 (8) −0.0039 (8)
C15 0.0570 (11) 0.0539 (11) 0.0399 (9) −0.0012 (8) 0.0107 (7) 0.0054 (7)
C16 0.0597 (12) 0.0746 (14) 0.0508 (11) 0.0032 (10) 0.0141 (9) 0.0079 (9)
C17 0.0549 (12) 0.0951 (18) 0.0539 (12) −0.0018 (11) 0.0020 (9) 0.0091 (11)
C18 0.0678 (14) 0.0890 (16) 0.0409 (10) −0.0065 (12) 0.0010 (9) 0.0002 (10)
C19 0.0614 (12) 0.0646 (12) 0.0376 (9) −0.0022 (9) 0.0055 (8) −0.0020 (8)
C20 0.0602 (11) 0.0455 (10) 0.0316 (8) −0.0021 (8) 0.0082 (7) 0.0036 (6)

Geometric parameters (Å, º)

O1—C12 1.368 (2) C12—C13 1.409 (3)
O1—H1 1.05 (2) C13—C14 1.354 (3)
N1—C1 1.464 (2) C13—H13 0.9500
N1—C2 1.467 (2) C14—C15 1.420 (3)
N1—C3 1.470 (2) C14—H14 0.9500
C1—N1i 1.464 (2) C15—C16 1.411 (3)
C1—H1A 0.9900 C15—C20 1.422 (3)
C1—H1B 0.9900 C16—C17 1.368 (3)
C2—C2i 1.503 (4) C16—H16 0.9500
C2—H2A 0.9900 C17—C18 1.397 (3)
C2—H2B 0.9900 C17—H17 0.9500
C3—C11 1.507 (2) C18—C19 1.362 (3)
C3—H3A 0.9900 C18—H18 0.9500
C3—H3B 0.9900 C19—C20 1.427 (2)
C11—C12 1.389 (2) C19—H19 0.9500
C11—C20 1.427 (3)
C12—O1—H1 102.4 (12) O1—C12—C13 116.36 (15)
C1—N1—C2 103.73 (15) C11—C12—C13 121.01 (17)
C1—N1—C3 113.36 (14) C14—C13—C12 120.94 (16)
C2—N1—C3 114.98 (14) C14—C13—H13 119.5
N1i—C1—N1 109.0 (2) C12—C13—H13 119.5
N1i—C1—H1A 109.9 C13—C14—C15 120.60 (17)
N1—C1—H1A 109.9 C13—C14—H14 119.7
N1i—C1—H1B 109.9 C15—C14—H14 119.7
N1—C1—H1B 109.9 C16—C15—C14 121.46 (18)
H1A—C1—H1B 108.3 C16—C15—C20 119.72 (18)
N1—C2—C2i 102.34 (10) C14—C15—C20 118.82 (18)
N1—C2—H2A 111.3 C17—C16—C15 120.9 (2)
C2i—C2—H2A 111.3 C17—C16—H16 119.5
N1—C2—H2B 111.3 C15—C16—H16 119.5
C2i—C2—H2B 111.3 C16—C17—C18 119.7 (2)
H2A—C2—H2B 109.2 C16—C17—H17 120.1
N1—C3—C11 114.13 (14) C18—C17—H17 120.1
N1—C3—H3A 108.7 C19—C18—C17 121.1 (2)
C11—C3—H3A 108.7 C19—C18—H18 119.5
N1—C3—H3B 108.7 C17—C18—H18 119.5
C11—C3—H3B 108.7 C18—C19—C20 121.08 (19)
H3A—C3—H3B 107.6 C18—C19—H19 119.5
C12—C11—C20 118.43 (16) C20—C19—H19 119.5
C12—C11—C3 121.27 (17) C15—C20—C11 120.07 (16)
C20—C11—C3 120.22 (15) C15—C20—C19 117.41 (18)
O1—C12—C11 122.62 (16) C11—C20—C19 122.50 (17)
C2—N1—C1—N1i 13.70 (8) C13—C14—C15—C20 −1.4 (3)
C3—N1—C1—N1i 139.08 (14) C14—C15—C16—C17 −178.1 (2)
C1—N1—C2—C2i −34.89 (17) C20—C15—C16—C17 1.6 (3)
C3—N1—C2—C2i −159.24 (14) C15—C16—C17—C18 0.2 (4)
C1—N1—C3—C11 166.25 (14) C16—C17—C18—C19 −1.2 (4)
C2—N1—C3—C11 −74.64 (18) C17—C18—C19—C20 0.4 (3)
N1—C3—C11—C12 −26.7 (2) C16—C15—C20—C11 179.33 (16)
N1—C3—C11—C20 156.64 (15) C14—C15—C20—C11 −1.0 (3)
C20—C11—C12—O1 175.45 (15) C16—C15—C20—C19 −2.2 (3)
C3—C11—C12—O1 −1.3 (3) C14—C15—C20—C19 177.39 (17)
C20—C11—C12—C13 −3.9 (3) C12—C11—C20—C15 3.6 (3)
C3—C11—C12—C13 179.33 (16) C3—C11—C20—C15 −179.57 (16)
O1—C12—C13—C14 −177.87 (16) C12—C11—C20—C19 −174.69 (17)
C11—C12—C13—C14 1.5 (3) C3—C11—C20—C19 2.1 (3)
C12—C13—C14—C15 1.2 (3) C18—C19—C20—C15 1.3 (3)
C13—C14—C15—C16 178.20 (18) C18—C19—C20—C11 179.66 (18)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 1.05 (2) 1.65 (2) 2.6143 (19) 151.0 (19)
C2—H2A···O1ii 0.99 2.64 3.257 (2) 121

Symmetry code: (ii) x, −y+2, z−1/2.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  3. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  4. Kober, E., Nerkowski, T., Janas, Z. & Jerzykiewicz, L. B. (2012). Dalton Trans. 41, 5188–5192. [DOI] [PubMed]
  5. Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64.
  6. Rivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166. [DOI] [PMC free article] [PubMed]
  7. Rivera, A., Nerio, L. S. & Bolte, M. (2014). Acta Cryst. E70, o243. [DOI] [PMC free article] [PubMed]
  8. Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170–o171. [DOI] [PMC free article] [PubMed]
  9. Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043–o3044. [DOI] [PMC free article] [PubMed]
  10. Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172. [DOI] [PMC free article] [PubMed]
  11. Rivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416–1420.
  12. Rivera, A., Ríos-Motta, J. & Navarro, M. A. (2006). Heterocycles, 68, 531–537.
  13. Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015002078/sj5441sup1.cif

e-71-00258-sup1.cif (296.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002078/sj5441Isup2.hkl

e-71-00258-Isup2.hkl (102.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015002078/sj5441Isup3.cml

CCDC reference: 1046536

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES