Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 28;71(Pt 3):324–326. doi: 10.1107/S205698901500376X

Crystal structure of bis­(μ2-4-tert-butyl-2-formyl­phenolato)-1:2κ3 O 1,O 2:O 1;3:4κ3 O 1,O 2:O 1-bis­(4-tert-butyl-2-formyl­phenolato)-2κ2 O 1,O 2;4κ2 O 1,O 2-di-μ3-methoxido-1:2:3κ3 O;1:3:4κ3 O-di-μ2-methoxido-1:4κ2 O;2:3κ2 O-tetra­copper(II)

Bernhard Eberhard Christian Bugenhagen a, Marc Heinrich Prosenc b,*
PMCID: PMC4350740  PMID: 25844200

The dinuclear title compound crystallizes as a dimer forming a tetra­nuclear copper(II) complex, [Cu4(CH3O)4(C11H13O2)4], in the solid state. In this complex, all CuII atoms have a square-pyramidal coordination sphere, with long axial and short basal Cu—O distances.

Keywords: crystal structure, copper(II), tetra­nuclear complex, hydrogen bonding

Abstract

The structure of the title compound, [Cu4(CH3O)4(C11H13O2)4], consists of dimeric dinuclear copper(II) complexes oriented around a centre of inversion. Within each dinuclear fragment, the two CuII atoms are in a distorted square-planar coordination sphere. Two neighbouring fragments are linked by four apical Cu—O contacts, yielding an overall square-pyramidal coordination environment for each of the four CuII atoms. The mol­ecules are arranged in layers parallel to (101). Non-classical C—H⋯O hydrogen-bonding inter­actions are observed between the layers.

Chemical context  

The title compound was obtained as a by-product in the synthesis of an unsymmetrically substituted copper(II) salophene complex (Kleij et al., 2005). The latter is of inter­est with respect to magnetic properties and cooperative effects between the metal(II) atoms (Kahn et al., 1982). In this compound, three types of bridging oxygen ligands are found. The magnetic exchange coupling between the paramagnetic CuII atoms is considered as strong in this type of bridges since the Cu—O—Cu angles are found to be close to 90°. The distances and coordination modes between CuII atoms vary and thus, the compound is a suitable study case for investigating different spin-coupling paths. This knowledge is deemed important for the design of tailor-made magnetic compounds.graphic file with name e-71-00324-scheme1.jpg

Structural commentary  

The tetra­nuclear copper(II) title compound consists of two dinuclear complex fragments oriented around a centre of inversion. Within each fragment the two CuII atoms are in a distorted square-planar coordination sphere, thereby bridged by two κ2 O methoxido ligands. The terminal bidentate 4-tert-butyl-2-formyl­phenolate ligand is coordinating each CuII atom in a manner generating a pseudo-mirror plane perpendicular to the four-membered bis-methoxido dicopper ring in the centre of the fragment. A longer Cu—O bond completes the overall square-pyramidal coordination for each CuII atom and links the two dinuclear fragments together. The distance between the two copper(II) ions Cu1 and Cu2 within the binuclear fragment is 2.9938 (2) Å (Fig. 1) which is in the same range as in related complexes (Kahn et al., 1982).

Figure 1.

Figure 1

The tetra­nuclear mol­ecule in the title compound. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) −x + 2, −y + 1, −z.]

Short distances Cu1—O1 of 1.9166 (8) Å, Cu1—O2 of 1.9557 (9) Å, Cu1—O5 of 1.9522 (8) Å and Cu1—O6 of 1.9154 (9) Å are found for the Cu1 atom to the basal O atoms within the binuclear fragment. A substanti­ally longer distance of 2.3703 (9) Å is observed for the apical Cu1—O5i [symmetry code: (i) −x + 2, −y + 1, −z] bond to the methoxido ligand of the neighbouring fragment. For the Cu2 atom, the situation is comparable, with slightly shorter Cu—O distances in comparison with Cu1: Cu2—O3 1.8939 (8) Å, Cu2—O4 1.9473 (9) Å, Cu2—O5 1.9455 (8) Å and Cu2—O6 1.9081 (8) Å. The longer distance Cu2—O1i of 2.4994 (9) Å to the phenoxido ligand atom of the neighbouring fragment causes less sterical congestions at the Cu2 atom and thus, appears to be the cause for the shorter basal Cu—O distances.

The binding modes (μ2 versus μ3) of the two methoxido ligands in each fragment can be distinguished by the angles C24—O5—O6 [152.62 (8)°, μ3] versus C23—O6—O5 [173.52 (11)°, μ2] (Fig. 1). Meth­oxy ligand atom O5 is more closely bound to the Cu1i atom, in addition with two short distances to Cu1 and Cu2 (see above), resulting in a more pyramidal-like geometry. This differs to the more trigonal-planar geometry of O6 (see Table 1 and Fig. 1) which is not bound to a third Cu atom but has two short distances to Cu1 and Cu2. In the salicyl­aldehyde ligands, the presence of a second metal ion coordinated by the phenoxide O atom has an effect on the phen­yl—O bond length, which is slightly elongated compared to the one in the non-bridging salicyl­aldehyde ligand [1.3075 (13) Å versus 1.2963 (13) Å].

Table 1. Selected bond angles ().

O3Cu2O5 92.75(4) O5Cu1O2 171.62(4)
O3Cu2O4 94.19(4) O1Cu1O5i 88.65(3)
O3Cu2O6 167.56(4) O1Cu1O5 94.74(3)
O6Cu2O4 95.13(4) O1Cu1O2 93.39(4)
O5Cu1O5i 84.34(3) O2Cu1O5i 97.91(3)

Symmetry code: (i) Inline graphic.

Within the dinuclear fragment, the aromatic rings are tilted by an angle of 24.69 (6)° due to repulsion of the tert-butyl groups.

Supra­molecular features  

In the crystal, the tetra­nuclear mol­ecules arrange in layers parallel to (101) (Fig. 2). Weak non-classical C—H⋯O inter­actions between the layers (Table 2) help to stabilize the crystal packing.

Figure 2.

Figure 2

A packing diagram of the title compound.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C14H14O4ii 0.95 2.57 3.3225(16) 136
C23H23BO2 0.98 2.43 3.0607(18) 122

Symmetry code: (ii) Inline graphic.

Synthesis and crystallization  

After treatment of 102 mg (0.35 mmol) 4-Br-salicyl-2-(2-amino)­phenyl­imine with 113 mg of copper(II)acetate monohydrate (0.445 mmol), 1 ml tri­ethyl­amine in 10 ml THF, and 65.5 mg (0.368 mmol) 4-tert-butyl­salicyl­aldehyde in 10 ml THF, the mixture was stirred for 22 h at room temperature. Addition of hexane yielded the title compound as a dark crystalline material from the reaction mixture (11.7 mg, 0.011 mmol, 8%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The positions of all H atoms were calculated according to the geometry of the parent C atom and refined using a riding model with C—H distances of 0.95 Å and U iso(H) = 1.5U eq(C) for sp 2 C atoms and of 0.98 Å and U iso(H) = 1.5U eq(C) for sp 3 C atoms.

Table 3. Experimental details.

Crystal data
Chemical formula [Cu4(CH3O)4(C11H13O2)4]
M r 1087.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c () 9.6863(1), 20.8460(2), 13.1387(1)
() 109.29
V (3) 2504.05(4)
Z 2
Radiation type Mo K
(mm1) 1.73
Crystal size (mm) 0.10 0.10 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.919, 1
No. of measured, independent and observed [I > 2(I)] reflections 105316, 9505, 7960
R int 0.036
(sin /)max (1) 0.769
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.026, 0.071, 1.00
No. of reflections 9505
No. of parameters 297
H-atom treatment H-atom parameters constrained
max, min (e 3) 1.02, 0.32

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS98 and SHELXL98 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S205698901500376X/wm5122sup1.cif

e-71-00324-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500376X/wm5122Isup2.hkl

e-71-00324-Isup2.hkl (520.6KB, hkl)

CCDC reference: 1050914

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Deutsche Forschungsgemeinschaft (collaborative research center SFB668-TP A4) is gratefully acknowledged for funding.

supplementary crystallographic information

Crystal data

[Cu4(CH3O)4(C11H13O2)4] F(000) = 1128
Mr = 1087.15 Dx = 1.442 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.6863 (1) Å Cell parameters from 32205 reflections
b = 20.8460 (2) Å θ = 2.3–37.5°
c = 13.1387 (1) Å µ = 1.73 mm1
β = 109.29° T = 100 K
V = 2504.05 (4) Å3 Rhomb, green
Z = 2 0.10 × 0.10 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 7960 reflections with I > 2σ(I)
Radiation source: micro-focus Rint = 0.036
φ and ω scans θmax = 33.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.919, Tmax = 1 k = −32→32
105316 measured reflections l = −20→19
9505 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.1362P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.002
9505 reflections Δρmax = 1.02 e Å3
297 parameters Δρmin = −0.32 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu2 1.13038 (2) 0.38778 (2) 0.05553 (2) 0.01384 (4)
Cu1 1.00190 (2) 0.50442 (2) 0.12264 (2) 0.01311 (4)
O5 0.94839 (9) 0.43609 (4) 0.01506 (7) 0.01477 (15)
O1 0.81072 (9) 0.54209 (4) 0.07888 (7) 0.01482 (15)
O2 1.08134 (10) 0.56551 (4) 0.24050 (7) 0.01891 (17)
O3 1.04828 (9) 0.32248 (4) −0.04680 (7) 0.01587 (15)
O4 1.32461 (10) 0.34946 (4) 0.10451 (7) 0.01933 (17)
C17 1.26704 (13) 0.25959 (5) −0.01668 (9) 0.01470 (19)
C12 1.11526 (12) 0.27283 (5) −0.06732 (9) 0.01403 (19)
C1 0.76032 (13) 0.57743 (5) 0.14096 (9) 0.01445 (19)
C6 0.84991 (13) 0.60899 (5) 0.23581 (10) 0.01488 (19)
C15 1.24880 (14) 0.15844 (5) −0.11608 (10) 0.0174 (2)
C16 1.33003 (14) 0.20284 (6) −0.04410 (10) 0.0175 (2)
H16 1.4320 0.1957 −0.0112 0.021*
C18 1.35947 (14) 0.30001 (6) 0.06423 (10) 0.0186 (2)
H18 1.4598 0.2882 0.0912 0.022*
C7 1.00511 (13) 0.60300 (6) 0.27384 (10) 0.0180 (2)
H7 1.0566 0.6307 0.3312 0.022*
C14 1.09802 (14) 0.17270 (6) −0.16606 (10) 0.0176 (2)
H14 1.0390 0.1430 −0.2168 0.021*
C13 1.03372 (13) 0.22738 (6) −0.14445 (10) 0.0171 (2)
H13 0.9329 0.2350 −0.1817 0.021*
C24 0.80626 (13) 0.40993 (6) −0.03192 (10) 0.0180 (2)
H24A 0.8022 0.3853 −0.0964 0.027*
H24B 0.7344 0.4448 −0.0519 0.027*
H24C 0.7840 0.3816 0.0202 0.027*
C5 0.78601 (13) 0.64841 (6) 0.29670 (10) 0.0174 (2)
H5 0.8485 0.6703 0.3581 0.021*
C4 0.63767 (13) 0.65593 (6) 0.27013 (11) 0.0191 (2)
C2 0.60768 (14) 0.58699 (6) 0.11255 (11) 0.0206 (2)
H2 0.5438 0.5674 0.0492 0.025*
C19 1.30872 (15) 0.09499 (6) −0.14322 (11) 0.0223 (2)
C8 0.56409 (15) 0.69417 (7) 0.33745 (12) 0.0246 (3)
C3 0.55021 (14) 0.62421 (7) 0.17531 (12) 0.0238 (3)
H3 0.4470 0.6289 0.1541 0.029*
C9 0.67686 (17) 0.72717 (8) 0.43383 (13) 0.0312 (3)
H9A 0.7387 0.6946 0.4812 0.047*
H9B 0.6260 0.7520 0.4740 0.047*
H9C 0.7379 0.7560 0.4078 0.047*
C21 1.23665 (18) 0.03915 (6) −0.10276 (14) 0.0311 (3)
H21A 1.2604 0.0424 −0.0244 0.047*
H21B 1.2733 −0.0017 −0.1205 0.047*
H21C 1.1303 0.0411 −0.1376 0.047*
C22 1.27128 (19) 0.08979 (7) −0.26595 (12) 0.0314 (3)
H22A 1.1649 0.0917 −0.3007 0.047*
H22B 1.3082 0.0490 −0.2837 0.047*
H22C 1.3169 0.1254 −0.2918 0.047*
C11 0.4717 (2) 0.64811 (9) 0.38021 (15) 0.0387 (4)
H11A 0.3980 0.6273 0.3194 0.058*
H11B 0.4230 0.6723 0.4226 0.058*
H11C 0.5354 0.6154 0.4259 0.058*
C20 1.47517 (17) 0.08965 (7) −0.09101 (14) 0.0320 (3)
H20A 1.5224 0.1251 −0.1159 0.048*
H20B 1.5085 0.0487 −0.1114 0.048*
H20C 1.5011 0.0917 −0.0124 0.048*
C10 0.46362 (19) 0.74557 (8) 0.26739 (15) 0.0382 (4)
H10A 0.5208 0.7739 0.2371 0.057*
H10B 0.4195 0.7708 0.3116 0.057*
H10C 0.3863 0.7249 0.2087 0.057*
O6 1.17413 (10) 0.45210 (4) 0.16493 (7) 0.01948 (17)
C23 1.31150 (16) 0.46434 (7) 0.24317 (13) 0.0322 (3)
H23A 1.3371 0.4290 0.2953 0.048*
H23B 1.3070 0.5045 0.2807 0.048*
H23C 1.3859 0.4680 0.2079 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu2 0.01494 (7) 0.01153 (6) 0.01431 (7) 0.00242 (4) 0.00386 (5) −0.00174 (4)
Cu1 0.01398 (7) 0.01176 (6) 0.01379 (7) 0.00176 (4) 0.00484 (5) −0.00189 (4)
O5 0.0127 (3) 0.0129 (3) 0.0187 (4) −0.0002 (3) 0.0052 (3) −0.0033 (3)
O1 0.0153 (4) 0.0148 (3) 0.0154 (4) 0.0016 (3) 0.0064 (3) −0.0025 (3)
O2 0.0165 (4) 0.0197 (4) 0.0196 (4) 0.0029 (3) 0.0047 (3) −0.0058 (3)
O3 0.0157 (4) 0.0129 (3) 0.0185 (4) 0.0012 (3) 0.0049 (3) −0.0023 (3)
O4 0.0188 (4) 0.0167 (4) 0.0186 (4) 0.0045 (3) 0.0009 (3) −0.0052 (3)
C17 0.0160 (5) 0.0131 (4) 0.0136 (5) 0.0017 (4) 0.0029 (4) −0.0010 (4)
C12 0.0161 (5) 0.0127 (4) 0.0135 (5) 0.0006 (4) 0.0052 (4) 0.0008 (3)
C1 0.0166 (5) 0.0119 (4) 0.0164 (5) 0.0001 (4) 0.0075 (4) −0.0010 (4)
C6 0.0159 (5) 0.0132 (4) 0.0167 (5) 0.0000 (4) 0.0069 (4) −0.0018 (4)
C15 0.0208 (5) 0.0138 (5) 0.0169 (5) 0.0030 (4) 0.0053 (4) −0.0016 (4)
C16 0.0187 (5) 0.0151 (5) 0.0169 (5) 0.0040 (4) 0.0034 (4) −0.0012 (4)
C18 0.0174 (5) 0.0176 (5) 0.0179 (5) 0.0044 (4) 0.0018 (4) −0.0025 (4)
C7 0.0172 (5) 0.0179 (5) 0.0182 (5) 0.0004 (4) 0.0048 (4) −0.0050 (4)
C14 0.0210 (5) 0.0139 (5) 0.0170 (5) −0.0004 (4) 0.0048 (4) −0.0025 (4)
C13 0.0164 (5) 0.0154 (5) 0.0177 (5) 0.0003 (4) 0.0031 (4) −0.0017 (4)
C24 0.0146 (5) 0.0169 (5) 0.0227 (6) −0.0030 (4) 0.0066 (4) −0.0054 (4)
C5 0.0190 (5) 0.0159 (5) 0.0181 (5) −0.0004 (4) 0.0074 (4) −0.0050 (4)
C4 0.0178 (5) 0.0185 (5) 0.0234 (6) −0.0009 (4) 0.0101 (4) −0.0065 (4)
C2 0.0153 (5) 0.0228 (6) 0.0238 (6) −0.0008 (4) 0.0066 (4) −0.0086 (4)
C19 0.0255 (6) 0.0154 (5) 0.0245 (6) 0.0037 (4) 0.0060 (5) −0.0052 (4)
C8 0.0208 (6) 0.0257 (6) 0.0307 (7) −0.0018 (5) 0.0131 (5) −0.0121 (5)
C3 0.0149 (5) 0.0273 (6) 0.0303 (7) −0.0008 (5) 0.0088 (5) −0.0110 (5)
C9 0.0269 (7) 0.0343 (7) 0.0351 (8) −0.0009 (6) 0.0138 (6) −0.0185 (6)
C21 0.0357 (8) 0.0146 (5) 0.0403 (8) 0.0035 (5) 0.0090 (6) 0.0005 (5)
C22 0.0397 (8) 0.0278 (7) 0.0271 (7) 0.0032 (6) 0.0117 (6) −0.0116 (5)
C11 0.0411 (9) 0.0407 (9) 0.0477 (10) −0.0119 (7) 0.0328 (8) −0.0192 (7)
C20 0.0277 (7) 0.0237 (6) 0.0412 (9) 0.0087 (5) 0.0069 (6) −0.0094 (6)
C10 0.0335 (8) 0.0349 (8) 0.0453 (10) 0.0127 (6) 0.0119 (7) −0.0121 (7)
O6 0.0181 (4) 0.0183 (4) 0.0179 (4) 0.0058 (3) 0.0003 (3) −0.0057 (3)
C23 0.0245 (7) 0.0295 (7) 0.0308 (7) 0.0102 (5) −0.0069 (5) −0.0140 (6)

Geometric parameters (Å, º)

Cu2—Cu1 2.9938 (2) C24—H24C 0.9800
Cu2—O5 1.9455 (8) C5—H5 0.9500
Cu2—O3 1.8939 (8) C5—C4 1.3710 (17)
Cu2—O4 1.9473 (9) C4—C8 1.5303 (17)
Cu2—O6 1.9081 (8) C4—C3 1.4177 (18)
Cu2—O1i 2.4994 (9) C2—H2 0.9500
Cu1—O5i 2.3703 (9) C2—C3 1.3766 (17)
Cu1—O5 1.9522 (8) C19—C21 1.540 (2)
Cu1—O1 1.9166 (8) C19—C22 1.535 (2)
Cu1—O2 1.9557 (9) C19—C20 1.534 (2)
Cu1—O6 1.9154 (9) C8—C9 1.535 (2)
O5—C24 1.4186 (14) C8—C11 1.540 (2)
O5—O6 2.4342 (12) C8—C10 1.533 (2)
O1—C1 1.3075 (13) C3—H3 0.9500
O2—C7 1.2497 (14) C9—H9A 0.9800
O3—C12 1.2963 (13) C9—H9B 0.9800
O4—C18 1.2550 (14) C9—H9C 0.9800
C17—C12 1.4262 (16) C21—H21A 0.9800
C17—C16 1.4307 (16) C21—H21B 0.9800
C17—C18 1.4187 (16) C21—H21C 0.9800
C12—C13 1.4211 (16) C22—H22A 0.9800
C1—C6 1.4228 (16) C22—H22B 0.9800
C1—C2 1.4143 (17) C22—H22C 0.9800
C6—C7 1.4244 (17) C11—H11A 0.9800
C6—C5 1.4232 (16) C11—H11B 0.9800
C15—C16 1.3705 (16) C11—H11C 0.9800
C15—C14 1.4209 (17) C20—H20A 0.9800
C15—C19 1.5331 (17) C20—H20B 0.9800
C16—H16 0.9500 C20—H20C 0.9800
C18—H18 0.9500 C10—H10A 0.9800
C7—H7 0.9500 C10—H10B 0.9800
C14—H14 0.9500 C10—H10C 0.9800
C14—C13 1.3728 (16) O6—C23 1.4102 (16)
C13—H13 0.9500 C23—H23A 0.9800
C24—H24A 0.9800 C23—H23B 0.9800
C24—H24B 0.9800 C23—H23C 0.9800
O5—Cu2—Cu1 39.90 (2) H24A—C24—H24C 109.5
O5—Cu2—O4 172.71 (4) H24B—C24—H24C 109.5
O3—Cu2—Cu1 132.45 (3) C6—C5—H5 118.8
O3—Cu2—O5 92.75 (4) C4—C5—C6 122.46 (11)
O3—Cu2—O4 94.19 (4) C4—C5—H5 118.8
O3—Cu2—O6 167.56 (4) C5—C4—C8 124.16 (11)
O4—Cu2—Cu1 133.32 (3) C5—C4—C3 116.24 (11)
O6—Cu2—Cu1 38.55 (3) C3—C4—C8 119.58 (11)
O6—Cu2—O5 78.34 (4) C1—C2—H2 119.5
O6—Cu2—O4 95.13 (4) C3—C2—C1 121.04 (11)
O5i—Cu1—Cu2 89.49 (2) C3—C2—H2 119.5
O5—Cu1—Cu2 39.74 (2) C15—C19—C21 108.80 (11)
O5—Cu1—O5i 84.34 (3) C15—C19—C22 109.21 (11)
O5—Cu1—O2 171.62 (4) C15—C19—C20 112.42 (11)
O1—Cu1—Cu2 134.34 (3) C22—C19—C21 109.42 (12)
O1—Cu1—O5i 88.65 (3) C20—C19—C21 108.68 (12)
O1—Cu1—O5 94.74 (3) C20—C19—C22 108.26 (13)
O1—Cu1—O2 93.39 (4) C4—C8—C9 111.71 (11)
O2—Cu1—Cu2 131.99 (3) C4—C8—C11 108.89 (11)
O2—Cu1—O5i 97.91 (3) C4—C8—C10 109.96 (12)
O6—Cu1—Cu2 38.38 (3) C9—C8—C11 108.63 (13)
O6—Cu1—O5 78.00 (4) C10—C8—C9 108.64 (12)
O6—Cu1—O5i 98.18 (4) C10—C8—C11 108.95 (14)
O6—Cu1—O1 169.41 (4) C4—C3—H3 118.4
O6—Cu1—O2 93.66 (4) C2—C3—C4 123.15 (12)
Cu2—O5—Cu1i 94.89 (3) C2—C3—H3 118.4
Cu2—O5—Cu1 100.36 (4) C8—C9—H9A 109.5
Cu2—O5—O6 50.15 (3) C8—C9—H9B 109.5
Cu1—O5—Cu1i 95.66 (3) C8—C9—H9C 109.5
Cu1—O5—O6 50.33 (3) H9A—C9—H9B 109.5
Cu1i—O5—O6 101.01 (4) H9A—C9—H9C 109.5
C24—O5—Cu2 125.55 (7) H9B—C9—H9C 109.5
C24—O5—Cu1i 106.36 (7) C19—C21—H21A 109.5
C24—O5—Cu1 125.65 (7) C19—C21—H21B 109.5
C24—O5—O6 152.62 (8) C19—C21—H21C 109.5
Cu1—O1—Cu2i 91.61 (3) H21A—C21—H21B 109.5
C1—O1—Cu2i 109.30 (7) H21A—C21—H21C 109.5
C1—O1—Cu1 124.52 (7) H21B—C21—H21C 109.5
C7—O2—Cu1 124.15 (8) C19—C22—H22A 109.5
C12—O3—Cu2 126.86 (8) C19—C22—H22B 109.5
C18—O4—Cu2 124.25 (8) C19—C22—H22C 109.5
C12—C17—C16 120.14 (10) H22A—C22—H22B 109.5
C18—C17—C12 122.20 (10) H22A—C22—H22C 109.5
C18—C17—C16 117.62 (10) H22B—C22—H22C 109.5
O3—C12—C17 124.55 (10) C8—C11—H11A 109.5
O3—C12—C13 118.83 (10) C8—C11—H11B 109.5
C13—C12—C17 116.62 (10) C8—C11—H11C 109.5
O1—C1—C6 124.16 (10) H11A—C11—H11B 109.5
O1—C1—C2 119.21 (10) H11A—C11—H11C 109.5
C2—C1—C6 116.61 (10) H11B—C11—H11C 109.5
C1—C6—C7 122.30 (10) C19—C20—H20A 109.5
C1—C6—C5 120.44 (11) C19—C20—H20B 109.5
C5—C6—C7 117.25 (11) C19—C20—H20C 109.5
C16—C15—C14 116.48 (10) H20A—C20—H20B 109.5
C16—C15—C19 124.61 (11) H20A—C20—H20C 109.5
C14—C15—C19 118.90 (11) H20B—C20—H20C 109.5
C17—C16—H16 118.8 C8—C10—H10A 109.5
C15—C16—C17 122.46 (11) C8—C10—H10B 109.5
C15—C16—H16 118.8 C8—C10—H10C 109.5
O4—C18—C17 127.79 (11) H10A—C10—H10B 109.5
O4—C18—H18 116.1 H10A—C10—H10C 109.5
C17—C18—H18 116.1 H10B—C10—H10C 109.5
O2—C7—C6 127.53 (11) Cu2—O6—Cu1 103.07 (4)
O2—C7—H7 116.2 Cu2—O6—O5 51.51 (3)
C6—C7—H7 116.2 Cu1—O6—O5 51.67 (3)
C15—C14—H14 118.5 C23—O6—Cu2 126.69 (8)
C13—C14—C15 123.05 (11) C23—O6—Cu1 129.06 (8)
C13—C14—H14 118.5 C23—O6—O5 173.52 (11)
C12—C13—H13 119.4 O6—C23—H23A 109.5
C14—C13—C12 121.19 (11) O6—C23—H23B 109.5
C14—C13—H13 119.4 O6—C23—H23C 109.5
O5—C24—H24A 109.5 H23A—C23—H23B 109.5
O5—C24—H24B 109.5 H23A—C23—H23C 109.5
O5—C24—H24C 109.5 H23B—C23—H23C 109.5
H24A—C24—H24B 109.5
Cu2i—O1—C1—C6 −86.12 (12) C16—C17—C18—O4 −175.35 (13)
Cu2i—O1—C1—C2 92.26 (11) C16—C15—C14—C13 −0.50 (19)
Cu2—O3—C12—C17 −1.66 (17) C16—C15—C19—C21 113.59 (15)
Cu2—O3—C12—C13 177.57 (8) C16—C15—C19—C22 −127.03 (14)
Cu2—O4—C18—C17 −5.2 (2) C16—C15—C19—C20 −6.85 (19)
Cu1—Cu2—O3—C12 −178.29 (8) C18—C17—C12—O3 1.37 (19)
Cu1—O1—C1—C6 19.97 (15) C18—C17—C12—C13 −177.88 (11)
Cu1—O1—C1—C2 −161.65 (9) C18—C17—C16—C15 175.79 (12)
Cu1—O2—C7—C6 0.60 (19) C7—C6—C5—C4 −177.61 (12)
O5—Cu2—O3—C12 177.23 (9) C14—C15—C16—C17 2.34 (19)
O1—C1—C6—C7 −2.07 (18) C14—C15—C19—C21 −64.86 (15)
O1—C1—C6—C5 177.80 (11) C14—C15—C19—C22 54.53 (16)
O1—C1—C2—C3 −179.56 (12) C14—C15—C19—C20 174.71 (13)
O3—C12—C13—C14 −177.39 (11) C5—C6—C7—O2 170.95 (12)
O4—Cu2—O3—C12 −0.55 (10) C5—C4—C8—C9 4.2 (2)
C17—C12—C13—C14 1.90 (17) C5—C4—C8—C11 −115.78 (15)
C12—C17—C16—C15 −2.07 (19) C5—C4—C8—C10 124.91 (15)
C12—C17—C18—O4 2.5 (2) C5—C4—C3—C2 0.8 (2)
C1—C6—C7—O2 −9.2 (2) C2—C1—C6—C7 179.51 (12)
C1—C6—C5—C4 2.52 (18) C2—C1—C6—C5 −0.62 (17)
C1—C2—C3—C4 1.0 (2) C19—C15—C16—C17 −176.13 (12)
C6—C1—C2—C3 −1.06 (19) C19—C15—C14—C13 178.07 (12)
C6—C5—C4—C8 175.75 (12) C8—C4—C3—C2 −177.58 (14)
C6—C5—C4—C3 −2.52 (19) C3—C4—C8—C9 −177.58 (14)
C15—C14—C13—C12 −1.66 (19) C3—C4—C8—C11 62.44 (18)
C16—C17—C12—O3 179.13 (11) C3—C4—C8—C10 −56.87 (17)
C16—C17—C12—C13 −0.12 (17) O6—Cu2—O3—C12 −138.98 (16)

Symmetry code: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O4ii 0.95 2.57 3.3225 (16) 136
C23—H23B···O2 0.98 2.43 3.0607 (18) 122

Symmetry code: (ii) x−1/2, −y+1/2, z−1/2.

References

  1. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Kahn, O., Galy, J., Journaux, Y., Jaud, J. & Morgenstern-Badarau, I. (1982). J. Am. Chem. Soc. 104, 2165–2176.
  4. Kleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. pp. 4626–4634.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S205698901500376X/wm5122sup1.cif

e-71-00324-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500376X/wm5122Isup2.hkl

e-71-00324-Isup2.hkl (520.6KB, hkl)

CCDC reference: 1050914

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES