Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 25;71(Pt 3):312–314. doi: 10.1107/S2056989015002212

Crystal structure of the di-Mannich base 4,4′-di­chloro-3,3′,5,5′-tetra­methyl-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol

Augusto Rivera a,*, Luz Stella Nerio a, Michael Bolte b
PMCID: PMC4350744  PMID: 25844196

In the title compound, the imidizadoline ring adopts an envelope conformation and the nitro­gen lone pairs are oriented in a syn disposition. The crystal packing is stabilized by C—H⋯O hydrogen-bonding inter­actions.

Keywords: crystal structure, imidazolidine, di-Mannich base, hydrogen bonding, syn conformation

Abstract

The title compound, C21H26Cl2N2O2, was prepared in a solvent-free microwave-assisted synthesis, and crystallizes in the ortho­rhom­bic space group Pna21. The imidazolidine ring adopts an envelope conformation and its mean plane is almost perpendicular to the two pendant aromatic rings [dihedral angles = 84.61 (9) and 86.54 (9)°]. The mol­ecular structure shows the presence of two intra­molecular O—H⋯N hydrogen bonds between the phenolic hy­droxy groups and imidazolidine N atoms. The two 3-chloro-6-hy­droxy-2,4-di­methyl­benzyl groups are located in a cis orientation with respect to the imidazolidine fragment. As a result, the lone pairs of electrons on the N atoms are presumed to be disposed in a syn conformation. This is therefore the first example of an exception to the ‘rabbit-ears’ effect in such 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol derivatives.

Chemical context  

As a continuation of our investigations of the Mannich reaction, we have synthesized a family of compounds of the type 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]di(hydroxyar­yl), from reactions between 1,3,6,8-tetra­zatri­cyclo­[4.4.1.13,8]dodecane (TATD) and phenols or naphthols (Rivera et al., 1993, 2005; Rivera & Quevedo, 2013). Such compounds are known to be valuable in homogeneous catalysis (Kober et al., 2012) and for the preparation of tetra­hydro­salens (Rivera et al., 2004) and heterocalixarenes (Rivera & Quevedo, 2004). Mannich bases are also convenient models for studying the nature of hydrogen bonding and other weak non-covalent inter­actions, as they contain at least one phenolic or naphtho­lic hy­droxy group as a proton donor, as well as an ortho-amino­methyl­group as a proton acceptor in the same mol­ecule (Koll et al., 2006). Herein, as part of our systematic investigations of di-Mannich bases as convenient model systems for the study of intra­molecular proton-transfer processes, we report the mol­ecular and crystal structure of the title di-Mannich base, 4,4′-di­chloro-3,3′,5,5′-tetra­methyl-2,2′- [imidazolidine-1,3-diylbis(methyl­ene)]diphenol (I).graphic file with name e-71-00312-scheme1.jpg

In a previous report (Rivera & Quevedo, 2013), the title compound (I) was obtained under solvent-free conditions by heating a 1:4 mixture of TATD and 4-chloro-3,5-di­methyl­phenol in an oil bath with stirring at 423 K for 20 min. Drawbacks of this synthesis include the long reaction time and a requirement of considerable effort to optimize the reaction conditions and temperature control. We therefore subsequently explored this reaction under solvent-free, microwave-assisted conditions. The reaction was found to proceed smoothly under microwave irradiation in only 3 min at 403 K, in modest yield.

Structural commentary  

In the title mol­ecule (I), Fig. 1, the imidazolidine ring adopts an envelope conformation, with atom C1 at the flap. The mol­ecular structure shows two intra­molecular O—H⋯N hydrogen bonds (Table 1) with S(6) graph-set motifs between the hy­droxy groups of the substituted phenol rings and the two imidazolidine N atoms. The benzyl groups are located in an unexpected 1,3-diequatorial syn arrangement on the heterocyclic ring with dihedral angles between the mean plane through the N1/C2/C3/N2 atoms of the imidazolidine ring and the C11–C16 and C21–C26 aromatic rings of 84.61 (9) and 88.54 (9)°, respectively. The non-bonding electron pairs on the imidazolidine N atoms that are involved in both intra- and inter­molecular hydrogen-bonding inter­actions adopt an unusual syn arrangement. As such, this mol­ecule defies the well known ‘rabbit-ears’ effect (Hutchins et al., 1968) in which N–CH2–N systems adopt anti conformations to avoid repulsions between the nitro­gen lone pairs. Although in the very similar structure of meso-4,4′-di­fluoro-2,2′-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis(methyl­ene)}diphenol (Rivera et al., 2013) the N-atom lone pairs are syn, mol­ecule (I) is the first reported exception to the ‘rabbit-ears’ effect in compounds of the 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol type (Rivera et al., 2011, 2012a ,b ,c , 2013, 2014).

Figure 1.

Figure 1

The title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N1 0.99(5) 1.66(5) 2.606(3) 158(4)
O2H2N2 0.86(4) 1.83(4) 2.619(3) 152(3)
C13H13O2i 0.95 2.59 3.464(4) 152

Symmetry code: (i) Inline graphic.

Supra­molecular features  

With both hy­droxy groups of (I) involved in intra­molecular hydrogen bonds, the only directional interaction in the crystal is a C13—H13⋯O2i bond (Table 1 and Fig. 2), which links adjacent mol­ecules in a head-to-tail fashion into zigzag chains, extending along the c-axis direction (Fig. 2).

Figure 2.

Figure 2

A perspective view along the a axis of the crystal packing of the title compound,. The C—H⋯O hydrogen bonds are shown as dashed lines.

Database survey  

A search in the Cambridge Structural Database (Groom & Allen 2014) revealed previous reports of six structures of related 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol compounds (Rivera et al., 2011, 2012a ,b ,c , 2013, 2014). Each of these also shows intra­molecular O—H⋯N hydrogen bonds between the two imidazolidine N atoms and the hy­droxy groups. In addition, the DA distances in these compounds compare well with those observed in the title compound. As with (I), the imidazolidine ring in the p-tert-butyl­phenol derivative (Rivera et al., 2013), adopts an envelope conformation whereas, in the other five the ring adopts a twist conformation. Furthermore, unlike the title compound, the nitro­gen lone pairs in all six of the related derivatives are oriented in an anti disposition.

Synthesis and crystallization  

A mixture of 1,3,6,8-tetra­zatri­cyclo­[4.4.1.13,8]dodecane (0.100 g, 0.6 mmol) and 4-chloro-3,5-di­methyl­phenol (0.375 g, 2.4 mmol) without any solvent was exposed to microwave irradiation in a CEM Discover reactor (with 250 W as the maximum power) for 3 min at a temperature of 403 K. Once cooled to room temperature, the reaction mixture was dissolved with CHCl3 which was removed under reduced pressure to yield the crude product. This was further purified by column chromatography on silica gel using a mixture of benzene:ethyl acetate (80:20) as eluent (yield 21%, m.p. = 421–422 K). Single crystals in the form of needles shorter than 1 mm were obtained from a chloro­form:ethanol (50:50) solution by slow evaporation of the solvent at room temperature over a period of one week.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located in difference electron density maps. The hy­droxy H atoms were freely refined. C-bound H atoms were fixed geometrically (C—H = 0.95 to 0.99 Å) and refined using a riding model, with U iso(H) set to 1.2U eq (1.5U eq for methyl groups) of the parent atoms. The methyl groups were allowed to rotate but not to tip.

Table 2. Experimental details.

Crystal data
Chemical formula C21H26Cl2N2O2
M r 409.34
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 173
a, b, c () 20.1594(11), 17.8088(12), 5.6120(3)
V (3) 2014.8(2)
Z 4
Radiation type Mo K
(mm1) 0.34
Crystal size (mm) 0.22 0.11 0.09
 
Data collection
Diffractometer Stoe IPDS II two circle
Absorption correction Multi-scan (X-AREA; Stoe Cie, 2001)
T min, T max 0.891, 0.946
No. of measured, independent and observed [I > 2(I)] reflections 17730, 3708, 3280
R int 0.080
(sin /)max (1) 0.604
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.035, 0.082, 1.00
No. of reflections 3708
No. of parameters 256
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.16, 0.20
Absolute structure Flack x determined using 1338 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.00(4)

Computer programs: X-AREA and X-RED32 (Stoe Cie, 2001), SHELXS87 and XP in SHELXTL-Plus (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015002212/sj5442sup1.cif

e-71-00312-sup1.cif (548.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002212/sj5442Isup2.hkl

e-71-00312-Isup2.hkl (203.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015002212/sj5442Isup3.cml

CCDC reference: 1046907

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work. LSN acknowledges COLCIENCIAS for a fellowship.

supplementary crystallographic information

Crystal data

C21H26Cl2N2O2 Dx = 1.349 Mg m3
Mr = 409.34 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 16491 reflections
a = 20.1594 (11) Å θ = 2.1–25.9°
b = 17.8088 (12) Å µ = 0.34 mm1
c = 5.6120 (3) Å T = 173 K
V = 2014.8 (2) Å3 Needle, colourless
Z = 4 0.22 × 0.11 × 0.09 mm
F(000) = 864

Data collection

Stoe IPDS II two-circle diffractometer 3280 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.080
ω scans θmax = 25.4°, θmin = 2.0°
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) h = −24→24
Tmin = 0.891, Tmax = 0.946 k = −21→21
17730 measured reflections l = −6→6
3708 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0492P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max = 0.001
S = 1.00 Δρmax = 0.16 e Å3
3708 reflections Δρmin = −0.20 e Å3
256 parameters Absolute structure: Flack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.00 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.71322 (3) 0.87262 (4) 0.49746 (17) 0.04042 (19)
Cl2 0.63887 (4) 0.04441 (4) 0.5199 (2) 0.0535 (2)
O1 0.55382 (11) 0.60445 (11) 0.6973 (4) 0.0383 (5)
H1 0.574 (2) 0.565 (3) 0.595 (9) 0.074 (13)*
O2 0.52557 (10) 0.34212 (11) 0.6988 (4) 0.0368 (5)
H2 0.5460 (19) 0.3744 (19) 0.611 (7) 0.044 (10)*
N1 0.62589 (11) 0.52659 (13) 0.4013 (5) 0.0304 (5)
N2 0.61125 (12) 0.40126 (13) 0.4025 (5) 0.0308 (5)
C1 0.60746 (16) 0.46539 (14) 0.2433 (5) 0.0326 (6)
H1A 0.5620 0.4721 0.1797 0.039*
H1B 0.6390 0.4605 0.1090 0.039*
C2 0.68434 (15) 0.49812 (15) 0.5313 (7) 0.0394 (7)
H2A 0.6872 0.5204 0.6925 0.047*
H2B 0.7258 0.5092 0.4435 0.047*
C3 0.67177 (14) 0.41297 (15) 0.5448 (6) 0.0341 (7)
H3A 0.7096 0.3846 0.4768 0.041*
H3B 0.6649 0.3968 0.7118 0.041*
C4 0.63685 (15) 0.59859 (15) 0.2782 (6) 0.0337 (6)
H4A 0.6020 0.6056 0.1558 0.040*
H4B 0.6803 0.5971 0.1959 0.040*
C5 0.60838 (15) 0.32829 (16) 0.2813 (6) 0.0337 (6)
H5A 0.6508 0.3195 0.1969 0.040*
H5B 0.5725 0.3294 0.1608 0.040*
C11 0.63568 (13) 0.66441 (15) 0.4475 (5) 0.0290 (6)
C12 0.59219 (13) 0.66519 (15) 0.6419 (6) 0.0304 (6)
C13 0.58553 (14) 0.72820 (15) 0.7842 (6) 0.0332 (6)
H13 0.5558 0.7269 0.9154 0.040*
C14 0.62147 (14) 0.79335 (15) 0.7393 (6) 0.0326 (7)
C15 0.66605 (13) 0.79115 (14) 0.5501 (6) 0.0308 (6)
C16 0.67502 (13) 0.72850 (15) 0.4053 (5) 0.0296 (6)
C17 0.61244 (17) 0.86156 (17) 0.8953 (7) 0.0429 (8)
H17A 0.5790 0.8509 1.0175 0.064*
H17B 0.5977 0.9040 0.7976 0.064*
H17C 0.6547 0.8741 0.9720 0.064*
C18 0.72556 (15) 0.72805 (16) 0.2061 (6) 0.0387 (7)
H18A 0.7530 0.7733 0.2163 0.058*
H18B 0.7026 0.7270 0.0522 0.058*
H18C 0.7538 0.6835 0.2208 0.058*
C21 0.59596 (13) 0.26437 (14) 0.4523 (5) 0.0299 (6)
C22 0.55305 (14) 0.27410 (15) 0.6465 (6) 0.0317 (6)
C23 0.53458 (15) 0.21404 (16) 0.7892 (6) 0.0351 (6)
H23 0.5045 0.2221 0.9169 0.042*
C24 0.55924 (16) 0.14239 (16) 0.7492 (6) 0.0385 (7)
C25 0.60474 (15) 0.13394 (15) 0.5636 (6) 0.0359 (7)
C26 0.62373 (14) 0.19245 (16) 0.4129 (6) 0.0334 (7)
C27 0.67213 (16) 0.18022 (16) 0.2127 (6) 0.0405 (7)
H27A 0.6872 0.1279 0.2141 0.061*
H27B 0.7103 0.2137 0.2333 0.061*
H27C 0.6504 0.1911 0.0604 0.061*
C28 0.5373 (2) 0.07780 (19) 0.9026 (7) 0.0534 (9)
H28A 0.5161 0.0395 0.8029 0.080*
H28B 0.5056 0.0958 1.0220 0.080*
H28C 0.5759 0.0560 0.9829 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0421 (4) 0.0336 (3) 0.0456 (4) −0.0080 (3) 0.0053 (4) −0.0003 (4)
Cl2 0.0674 (5) 0.0306 (3) 0.0625 (6) 0.0073 (3) −0.0007 (6) 0.0026 (4)
O1 0.0401 (11) 0.0349 (10) 0.0400 (14) −0.0082 (9) 0.0115 (10) 0.0021 (9)
O2 0.0379 (11) 0.0373 (11) 0.0353 (13) 0.0040 (9) 0.0028 (10) 0.0014 (10)
N1 0.0329 (12) 0.0293 (11) 0.0289 (13) −0.0008 (9) −0.0042 (11) 0.0015 (10)
N2 0.0352 (13) 0.0284 (11) 0.0287 (13) 0.0008 (9) −0.0056 (11) 0.0000 (10)
C1 0.0389 (15) 0.0314 (14) 0.0276 (17) −0.0011 (11) −0.0055 (13) 0.0012 (12)
C2 0.0415 (15) 0.0360 (14) 0.041 (2) −0.0018 (12) −0.0137 (17) 0.0032 (15)
C3 0.0362 (15) 0.0345 (13) 0.0316 (18) 0.0020 (11) −0.0093 (13) −0.0026 (13)
C4 0.0397 (16) 0.0294 (14) 0.0319 (17) −0.0007 (11) 0.0015 (14) 0.0043 (12)
C5 0.0385 (15) 0.0328 (14) 0.0297 (17) −0.0006 (12) −0.0014 (13) −0.0034 (13)
C11 0.0294 (14) 0.0299 (13) 0.0278 (18) 0.0023 (10) −0.0001 (12) 0.0028 (11)
C12 0.0277 (14) 0.0317 (13) 0.0316 (17) 0.0003 (11) 0.0017 (12) 0.0036 (12)
C13 0.0314 (14) 0.0368 (14) 0.0314 (17) 0.0021 (12) 0.0052 (13) 0.0011 (12)
C14 0.0320 (14) 0.0318 (14) 0.0342 (19) 0.0028 (10) −0.0001 (13) −0.0008 (13)
C15 0.0286 (13) 0.0298 (13) 0.0341 (18) −0.0021 (10) −0.0026 (12) 0.0020 (12)
C16 0.0268 (13) 0.0325 (14) 0.0294 (16) 0.0033 (11) 0.0004 (12) 0.0048 (11)
C17 0.0484 (18) 0.0375 (16) 0.043 (2) 0.0007 (13) 0.0080 (16) −0.0055 (14)
C18 0.0394 (16) 0.0375 (15) 0.0392 (19) −0.0023 (12) 0.0099 (15) −0.0007 (13)
C21 0.0295 (13) 0.0308 (13) 0.0294 (18) −0.0022 (11) −0.0035 (12) −0.0018 (11)
C22 0.0309 (14) 0.0345 (14) 0.0297 (17) 0.0005 (11) −0.0053 (12) −0.0020 (12)
C23 0.0337 (15) 0.0418 (16) 0.0297 (16) −0.0032 (12) 0.0003 (13) 0.0006 (13)
C24 0.0450 (17) 0.0352 (15) 0.0352 (19) −0.0093 (12) −0.0069 (15) 0.0043 (13)
C25 0.0403 (15) 0.0295 (13) 0.038 (2) −0.0003 (11) −0.0085 (13) −0.0005 (12)
C26 0.0309 (14) 0.0346 (15) 0.0347 (17) −0.0020 (11) −0.0047 (13) −0.0045 (12)
C27 0.0421 (17) 0.0390 (16) 0.040 (2) 0.0014 (13) 0.0049 (15) −0.0065 (14)
C28 0.065 (2) 0.0424 (18) 0.053 (2) −0.0127 (16) 0.0006 (19) 0.0101 (16)

Geometric parameters (Å, º)

Cl1—C15 1.760 (3) C13—C14 1.391 (4)
Cl2—C25 1.754 (3) C13—H13 0.9500
O1—C12 1.366 (3) C14—C15 1.392 (4)
O1—H1 0.99 (5) C14—C17 1.508 (4)
O2—C22 1.364 (3) C15—C16 1.392 (4)
O2—H2 0.86 (4) C16—C18 1.513 (4)
N1—C1 1.453 (4) C17—H17A 0.9800
N1—C4 1.473 (4) C17—H17B 0.9800
N1—C2 1.476 (4) C17—H17C 0.9800
N2—C1 1.452 (3) C18—H18A 0.9800
N2—C5 1.468 (4) C18—H18B 0.9800
N2—C3 1.473 (4) C18—H18C 0.9800
C1—H1A 0.9900 C21—C22 1.402 (4)
C1—H1B 0.9900 C21—C26 1.415 (4)
C2—C3 1.539 (4) C22—C23 1.387 (4)
C2—H2A 0.9900 C23—C24 1.388 (4)
C2—H2B 0.9900 C23—H23 0.9500
C3—H3A 0.9900 C24—C25 1.396 (5)
C3—H3B 0.9900 C24—C28 1.503 (4)
C4—C11 1.509 (4) C25—C26 1.396 (4)
C4—H4A 0.9900 C26—C27 1.504 (5)
C4—H4B 0.9900 C27—H27A 0.9800
C5—C21 1.510 (4) C27—H27B 0.9800
C5—H5A 0.9900 C27—H27C 0.9800
C5—H5B 0.9900 C28—H28A 0.9800
C11—C12 1.399 (4) C28—H28B 0.9800
C11—C16 1.410 (4) C28—H28C 0.9800
C12—C13 1.384 (4)
C12—O1—H1 101 (3) C15—C14—C17 122.9 (3)
C22—O2—H2 106 (2) C14—C15—C16 123.5 (2)
C1—N1—C4 113.9 (2) C14—C15—Cl1 117.0 (2)
C1—N1—C2 104.4 (2) C16—C15—Cl1 119.5 (2)
C4—N1—C2 114.3 (2) C15—C16—C11 118.5 (3)
C1—N2—C5 114.2 (2) C15—C16—C18 121.5 (3)
C1—N2—C3 105.4 (2) C11—C16—C18 119.9 (3)
C5—N2—C3 114.2 (2) C14—C17—H17A 109.5
N2—C1—N1 101.6 (2) C14—C17—H17B 109.5
N2—C1—H1A 111.5 H17A—C17—H17B 109.5
N1—C1—H1A 111.5 C14—C17—H17C 109.5
N2—C1—H1B 111.5 H17A—C17—H17C 109.5
N1—C1—H1B 111.5 H17B—C17—H17C 109.5
H1A—C1—H1B 109.3 C16—C18—H18A 109.5
N1—C2—C3 103.4 (2) C16—C18—H18B 109.5
N1—C2—H2A 111.1 H18A—C18—H18B 109.5
C3—C2—H2A 111.1 C16—C18—H18C 109.5
N1—C2—H2B 111.1 H18A—C18—H18C 109.5
C3—C2—H2B 111.1 H18B—C18—H18C 109.5
H2A—C2—H2B 109.1 C22—C21—C26 118.5 (3)
N2—C3—C2 104.4 (2) C22—C21—C5 120.2 (2)
N2—C3—H3A 110.9 C26—C21—C5 121.2 (3)
C2—C3—H3A 110.9 O2—C22—C23 116.8 (3)
N2—C3—H3B 110.9 O2—C22—C21 121.9 (3)
C2—C3—H3B 110.9 C23—C22—C21 121.3 (3)
H3A—C3—H3B 108.9 C22—C23—C24 121.3 (3)
N1—C4—C11 112.2 (3) C22—C23—H23 119.4
N1—C4—H4A 109.2 C24—C23—H23 119.4
C11—C4—H4A 109.2 C23—C24—C25 117.1 (3)
N1—C4—H4B 109.2 C23—C24—C28 120.4 (3)
C11—C4—H4B 109.2 C25—C24—C28 122.6 (3)
H4A—C4—H4B 107.9 C26—C25—C24 123.5 (3)
N2—C5—C21 112.3 (2) C26—C25—Cl2 119.1 (2)
N2—C5—H5A 109.1 C24—C25—Cl2 117.4 (2)
C21—C5—H5A 109.1 C25—C26—C21 118.2 (3)
N2—C5—H5B 109.1 C25—C26—C27 121.5 (3)
C21—C5—H5B 109.1 C21—C26—C27 120.3 (3)
H5A—C5—H5B 107.9 C26—C27—H27A 109.5
C12—C11—C16 118.4 (3) C26—C27—H27B 109.5
C12—C11—C4 120.6 (2) H27A—C27—H27B 109.5
C16—C11—C4 120.9 (3) C26—C27—H27C 109.5
O1—C12—C13 117.1 (3) H27A—C27—H27C 109.5
O1—C12—C11 121.6 (3) H27B—C27—H27C 109.5
C13—C12—C11 121.2 (3) C24—C28—H28A 109.5
C12—C13—C14 121.4 (3) C24—C28—H28B 109.5
C12—C13—H13 119.3 H28A—C28—H28B 109.5
C14—C13—H13 119.3 C24—C28—H28C 109.5
C13—C14—C15 116.8 (3) H28A—C28—H28C 109.5
C13—C14—C17 120.3 (3) H28B—C28—H28C 109.5
C5—N2—C1—N1 −168.1 (2) C14—C15—C16—C18 −178.2 (3)
C3—N2—C1—N1 −42.0 (3) Cl1—C15—C16—C18 1.3 (4)
C4—N1—C1—N2 170.7 (2) C12—C11—C16—C15 −3.7 (4)
C2—N1—C1—N2 45.4 (3) C4—C11—C16—C15 172.2 (3)
C1—N1—C2—C3 −31.0 (3) C12—C11—C16—C18 176.3 (3)
C4—N1—C2—C3 −156.0 (2) C4—C11—C16—C18 −7.8 (4)
C1—N2—C3—C2 22.5 (3) N2—C5—C21—C22 37.3 (4)
C5—N2—C3—C2 148.6 (3) N2—C5—C21—C26 −146.7 (3)
N1—C2—C3—N2 5.2 (3) C26—C21—C22—O2 178.5 (3)
C1—N1—C4—C11 163.0 (2) C5—C21—C22—O2 −5.4 (4)
C2—N1—C4—C11 −77.2 (3) C26—C21—C22—C23 −4.0 (4)
C1—N2—C5—C21 −166.3 (2) C5—C21—C22—C23 172.1 (3)
C3—N2—C5—C21 72.3 (3) O2—C22—C23—C24 179.3 (3)
N1—C4—C11—C12 −36.2 (4) C21—C22—C23—C24 1.7 (5)
N1—C4—C11—C16 148.0 (2) C22—C23—C24—C25 1.7 (4)
C16—C11—C12—O1 −178.3 (3) C22—C23—C24—C28 −178.6 (3)
C4—C11—C12—O1 5.8 (4) C23—C24—C25—C26 −3.0 (5)
C16—C11—C12—C13 2.7 (4) C28—C24—C25—C26 177.3 (3)
C4—C11—C12—C13 −173.2 (3) C23—C24—C25—Cl2 177.3 (2)
O1—C12—C13—C14 −178.7 (3) C28—C24—C25—Cl2 −2.4 (4)
C11—C12—C13—C14 0.3 (5) C24—C25—C26—C21 0.8 (5)
C12—C13—C14—C15 −2.2 (4) Cl2—C25—C26—C21 −179.5 (2)
C12—C13—C14—C17 179.1 (3) C24—C25—C26—C27 −179.0 (3)
C13—C14—C15—C16 1.2 (4) Cl2—C25—C26—C27 0.7 (4)
C17—C14—C15—C16 179.8 (3) C22—C21—C26—C25 2.7 (4)
C13—C14—C15—Cl1 −178.4 (2) C5—C21—C26—C25 −173.4 (3)
C17—C14—C15—Cl1 0.3 (4) C22—C21—C26—C27 −177.5 (3)
C14—C15—C16—C11 1.8 (4) C5—C21—C26—C27 6.4 (4)
Cl1—C15—C16—C11 −178.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.99 (5) 1.66 (5) 2.606 (3) 158 (4)
O2—H2···N2 0.86 (4) 1.83 (4) 2.619 (3) 152 (3)
C13—H13···O2i 0.95 2.59 3.464 (4) 152

Symmetry code: (i) −x+1, −y+1, z+1/2.

References

  1. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  2. Hutchins, R. O., Kopp, L. D. & Eliel, E. L. (1968). J. Am. Chem. Soc. 90, 7174–7175.
  3. Kober, E., Nerkowski, T., Janas, Z. & Jerzykiewicz, L. B. (2012). Dalton Trans. 41, 5188–5191. [DOI] [PubMed]
  4. Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64.
  5. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  6. Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun 23, 2921–2929.
  7. Rivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166. [DOI] [PMC free article] [PubMed]
  8. Rivera, A., Nerio, L. S. & Bolte, M. (2014). Acta Cryst. E70, o243. [DOI] [PMC free article] [PubMed]
  9. Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170–o171. [DOI] [PMC free article] [PubMed]
  10. Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043–o3044. [DOI] [PMC free article] [PubMed]
  11. Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172. [DOI] [PMC free article] [PubMed]
  12. Rivera, A. & Quevedo, R. (2004). Tetrahedron Lett. 45, 8335–8338.
  13. Rivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416–1420.
  14. Rivera, A., Quevedo, R., Navarro, M. A. & Maldonado, M. (2004). Synth. Commun. 34, 2479–2485.
  15. Rivera, A., Quiroga, D., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2013). Acta Cryst. E69, o217. [DOI] [PMC free article] [PubMed]
  16. Rivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Col. Quím. 34, 105–115.
  17. Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015002212/sj5442sup1.cif

e-71-00312-sup1.cif (548.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002212/sj5442Isup2.hkl

e-71-00312-Isup2.hkl (203.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015002212/sj5442Isup3.cml

CCDC reference: 1046907

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES