Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 18;71(Pt 3):281–283. doi: 10.1107/S2056989015003163

Crystal structure of disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate

Dvir Gur a,*, Linda J W Shimon b
PMCID: PMC4350748  PMID: 25844188

In the title compound, the deprotonated guanine mol­ecules are arranged in centrosymmetric pairs, and form hydrogen bonds with the neighboring water mol­ecules.

Keywords: crystal structure, guanine salt, nucleobase, hydrogen bonds

Abstract

In the title compound, disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate, 2Na+·C5H3N5O2−·7H2O, the structure is composed of alternating (100) layers of guanine mol­ecules and hydrated Na+ ions. Within the guanine layer, the mol­ecules are arranged in centrosymmetric pairs, with a partial overlap between the guanine rings. In this compound, guanine exists as the amino–keto tautomer from which deprotonation from N1 and N7 has occurred (purine numbering). There are no direct inter­actions between the Na+ cations and the guanine anions. Guanine mol­ecules are linked to neighboring water mol­ecules by O—H⋯N and O—H⋯O hydrogen bonds into a network structure.

Chemical context  

Guanine is one of the five nucleic acids present in both DNA and RNA (Blackburn et al., 2006), and is also found in its crystalline form in the integument of many animals as a light reflector (Land, 1972; Parker, 2000; Gur et al., 2013, 2014). There are two known crystal structures of guanine; guanine monohydrate (Thewalt et al., 1971) and anhydrous guanine (Guille & Clegg, 2006). In addition there are also a few known guanine salts (Broomhead, 1951; Wei, 1977; Iball & Wilson, 1965). The crystal structure of the title compound was obtained as a part of a study into controlling the crystal phase of guanine using recrystallization.graphic file with name e-71-00281-scheme1.jpg

Cation, anion and radical formation among nucleic acids are thought to be important steps in DNA damage (Cooke et al., 2003; Kasai, 1997). For that reason, protonation and deprotonation of nucleic acids and their role in processes like mutation has been widely studied both theoretically and experimentally. It is thought that the most prominent site for this kind of damage will be guanine because it has the lowest oxidation potential among the four DNA bases (Burrows & Muller, 1998; Steenken & Jovanovic, 1997). As a result, even initially different oxidized species may eventually migrate to guanine. Therefore, DNA damage is predicted to be produced at this site (Melvin et al., 1995). The crystal structure of the deprotonated guanine presented in this report may provide information about the deprotonated oxidized guanine state and its inter­actions with the neighboring water mol­ecules.

Structural commentary  

In the structure of the title compound, the asymmetric unit is composed of a guanine anion, two sodium counter-ions and seven water mol­ecules (Fig. 1). In this compound, guanine exists as the amino–keto tautomer, the guanine mol­ecules are doubly negatively charged, as a result of the deprotonation from N1 and N7 (purine numbering) that occurred due to the alkaline conditions of the solution from which recrystallization took place. There are no direct inter­actions between the Na+ cations and the guanine anions.

Figure 1.

Figure 1

A displacement ellipsoid plot of the asymmetric unit drawn at the 50% probability level. H atoms have been omitted for clarity.

Supra­molecular features  

The structure is composed of alternating (100) layers of guanine mol­ecules and hydrated Na+ Ions (Fig. 2). Within the guanine layer, the mol­ecules are arranged in centrosymmetric pairs, in which a partial overlap between the guanine rings is present. The distances between the overlapping atoms C2–N3 i and C4–N10 i are 3.415 (2) and 3.460 (2) Å, respectively [symmetry code: (i) = 1 − x, 1 − y, 1 − z]. The two mol­ecules are offset presumably to separate the charged N ions of the two mol­ecules and at the same time provide van der Waals contacts between the two rings. In most known guanine crystal structures, neighboring guanine mol­ecules form hydrogen bonds that result in flat layers of guanine mol­ecules, between which stacking inter­actions are present. Such layers are not present in the structure of the title compound. Instead, the guanine mol­ecules form O—H⋯N and O—H⋯O hydrogen bonds with the neighboring water mol­ecules (Table 1), satisfying all guanine donors and acceptors with the exception of the NH2 amine group, which surprisingly does not seem to participate in any hydrogen bonding, and is not within hydrogen-bonding distance of any hydrogen acceptors. In addition, the guanine mol­ecules form dimers that have an edge-to-face type orientation, resulting in the observed herringbone crystal packing motif with a dihedral angle of 123.917 (17)° (Fig. 3).

Figure 2.

Figure 2

The crystal structure viewed down the c axis, showing the alternating layers of guanine mol­ecules and hydrated sodium ions.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2H2AN9i 0.84(3) 1.97(3) 2.7875(19) 168(3)
O2H2BN3 0.89(3) 2.08(3) 2.9582(19) 167(2)
O3H3AO5ii 0.87(3) 2.08(3) 2.9200(18) 163(3)
O3H3BN3 0.87(3) 1.95(3) 2.8038(18) 166(3)
O4H4AN1iii 0.85(3) 1.96(3) 2.8093(19) 177(3)
O4H4BN9 0.85(3) 2.14(3) 2.9866(19) 176(2)
O5H5CO1iii 0.81(3) 1.96(3) 2.7581(18) 168(3)
O6H6AO2iv 0.79(3) 2.02(3) 2.7938(19) 167(3)
O6H6BN7v 0.90(3) 2.01(3) 2.909(2) 173(2)
O7H7AO1v 0.88(3) 1.95(3) 2.7867(17) 160(3)
O7H7BO3 0.85(3) 1.92(3) 2.7608(18) 168(3)
O8H8AO1iii 0.84(3) 1.99(3) 2.8303(17) 171(3)
O8H8BN7vi 0.82(3) 1.98(3) 2.7938(19) 171(3)
O5H5DO1vii 0.78(3) 2.02(3) 2.7835(17) 164(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 3.

Figure 3

A view down the a axis showing the herringbone crystal packing motif, including edge-to-face inter­actions between the guanine dimers.

Synthesis and crystallization  

Disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate was prepared by dissolving 0.1 g guanine (powder Sigma–Aldrich) in 5 ml NaOH 1 N (pH 14). The solution was then filtered using a PVDF filter (0.22 µm), and 0.1 ml of NaOH 1 N was added to the solution to ensure that all of the guanine was dissolved. The solution was then kept for 10 days under an IR lamp using 15 min. cycles (on/off) while open to the atmosphere. Large 3mm crystals were extracted from the suspension, broken to a suitable size and subjected to single crystal X-ray diffraction.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were refined freely with the exception of C8-bound H atom that was placed in a calculated position and refined in riding mode.

Table 2. Experimental details.

Crystal data
Chemical formula 2Na+C5H3N5O27H2O
M r 321.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c () 10.5520(2), 11.6936(3), 11.1938(2)
() 101.5758(13)
V (3) 1353.12(5)
Z 4
Radiation type Mo K
(mm1) 0.20
Crystal size (mm) 0.30 0.10 0.05
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (DENZO-SMN; Otwinowski Minor, 2006)
T min, T max 0.977, 0.990
No. of measured, independent and observed [I > 2(I)] reflections 6648, 3931, 2981
R int 0.019
(sin /)max (1) 0.704
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.049, 0.147, 1.07
No. of reflections 3931
No. of parameters 248
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.57, 0.39

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski Minor, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009), CrystalMaker (CrystalMaker, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015003163/pk2539sup1.cif

e-71-00281-sup1.cif (240.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003163/pk2539Isup2.hkl

e-71-00281-Isup2.hkl (215.7KB, hkl)

CCDC reference: 1049453

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank Professor Lia Addadi, Professor Steve Weiner and Professor Leslie Schwartz for their helpful guidance and advice. This research was supported by a grant from the Israel Science foundation (grant No. 2012\224330*).

supplementary crystallographic information

Crystal data

2Na+·C5H3N5O2·7H2O F(000) = 672
Mr = 321.21 Dx = 1.577 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.5520 (2) Å Cell parameters from 3810 reflections
b = 11.6936 (3) Å θ = 2.6–30.0°
c = 11.1938 (2) Å µ = 0.20 mm1
β = 101.5758 (13)° T = 120 K
V = 1353.12 (5) Å3 Plate, colourless
Z = 4 0.30 × 0.10 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer 2981 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.019
φ and ω scans θmax = 30.0°, θmin = 3.7°
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 2006) h = −14→14
Tmin = 0.977, Tmax = 0.990 k = −12→16
6648 measured reflections l = −15→15
3931 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.5094P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3931 reflections Δρmax = 0.57 e Å3
248 parameters Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.65524 (13) 0.48287 (13) 0.34832 (13) 0.0172 (3)
C2 0.52557 (16) 0.48307 (15) 0.33930 (15) 0.0175 (3)
N3 0.45252 (13) 0.40241 (13) 0.37665 (13) 0.0170 (3)
C4 0.52344 (15) 0.31289 (15) 0.43267 (14) 0.0158 (3)
C5 0.65775 (15) 0.30526 (15) 0.44968 (14) 0.0161 (3)
C6 0.72597 (15) 0.39376 (14) 0.40446 (14) 0.0156 (3)
N7 0.69798 (13) 0.20349 (13) 0.50957 (13) 0.0186 (3)
C8 0.58601 (16) 0.15733 (16) 0.52393 (16) 0.0193 (3)
H8 0.585 (2) 0.087 (2) 0.563 (2) 0.023*
N9 0.47610 (13) 0.21804 (13) 0.47962 (13) 0.0178 (3)
N10 0.46123 (16) 0.57498 (15) 0.27867 (15) 0.0235 (3)
H10A 0.378 (3) 0.585 (3) 0.290 (3) 0.057 (9)*
H10B 0.513 (3) 0.636 (3) 0.271 (3) 0.048 (8)*
O1 0.85043 (11) 0.39326 (11) 0.41331 (10) 0.0171 (3)
Na1 0.11549 (6) 0.25431 (6) 0.18356 (6) 0.01689 (17)
Na2 0.04858 (6) 0.04502 (6) 0.37257 (6) 0.01704 (17)
O2 0.30698 (12) 0.32592 (11) 0.13607 (12) 0.0194 (3)
H2A 0.355 (3) 0.303 (3) 0.090 (3) 0.043 (8)*
H2B 0.362 (3) 0.346 (2) 0.204 (2) 0.031 (6)*
O3 0.18432 (12) 0.38036 (11) 0.35525 (11) 0.0186 (3)
H3A 0.143 (3) 0.445 (3) 0.352 (3) 0.048 (8)*
H3B 0.267 (3) 0.391 (3) 0.374 (3) 0.042 (7)*
O4 0.24329 (12) 0.11485 (11) 0.32009 (11) 0.0177 (3)
H4A 0.276 (3) 0.075 (2) 0.271 (3) 0.035 (7)*
H4B 0.307 (3) 0.146 (2) 0.367 (2) 0.032 (7)*
O5 −0.00208 (13) 0.06838 (11) 0.14535 (11) 0.0174 (3)
H5C 0.050 (3) 0.024 (3) 0.128 (3) 0.042 (8)*
H5D −0.051 (3) 0.089 (3) 0.087 (3) 0.040 (7)*
O6 −0.15505 (12) 0.02121 (12) 0.42404 (11) 0.0200 (3)
H6A −0.207 (3) −0.027 (3) 0.401 (3) 0.037 (7)*
H6B −0.203 (3) 0.079 (2) 0.444 (2) 0.037 (7)*
O7 0.04292 (13) 0.22690 (11) 0.46296 (11) 0.0180 (3)
H7A −0.030 (3) 0.265 (3) 0.447 (3) 0.041 (7)*
H7B 0.094 (3) 0.274 (2) 0.440 (3) 0.034 (7)*
O8 0.08223 (12) −0.14985 (11) 0.31485 (11) 0.0175 (3)
H8A 0.108 (2) −0.143 (2) 0.249 (3) 0.033 (7)*
H8B 0.145 (3) −0.173 (2) 0.365 (3) 0.034 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0152 (6) 0.0196 (7) 0.0171 (6) −0.0014 (5) 0.0042 (5) 0.0002 (5)
C2 0.0158 (7) 0.0205 (8) 0.0162 (7) 0.0002 (6) 0.0034 (6) −0.0002 (6)
N3 0.0139 (6) 0.0197 (7) 0.0172 (6) −0.0007 (5) 0.0030 (5) 0.0006 (5)
C4 0.0130 (7) 0.0214 (8) 0.0127 (7) 0.0011 (6) 0.0023 (5) −0.0006 (6)
C5 0.0141 (7) 0.0201 (8) 0.0140 (7) 0.0015 (6) 0.0024 (5) 0.0016 (6)
C6 0.0131 (7) 0.0207 (8) 0.0128 (7) −0.0008 (6) 0.0021 (5) −0.0024 (6)
N7 0.0154 (6) 0.0205 (7) 0.0194 (7) 0.0015 (5) 0.0022 (5) 0.0026 (5)
C8 0.0163 (8) 0.0220 (9) 0.0196 (8) 0.0012 (6) 0.0033 (6) 0.0020 (6)
N9 0.0154 (6) 0.0209 (7) 0.0169 (6) 0.0000 (5) 0.0030 (5) 0.0016 (5)
N10 0.0180 (7) 0.0243 (8) 0.0282 (8) 0.0031 (6) 0.0045 (6) 0.0072 (6)
O1 0.0106 (5) 0.0232 (6) 0.0177 (5) −0.0012 (4) 0.0034 (4) −0.0005 (4)
Na1 0.0157 (3) 0.0191 (4) 0.0157 (3) −0.0004 (2) 0.0028 (2) 0.0002 (2)
Na2 0.0166 (3) 0.0193 (3) 0.0158 (3) 0.0003 (2) 0.0045 (2) −0.0001 (2)
O2 0.0159 (6) 0.0261 (7) 0.0167 (6) −0.0009 (5) 0.0045 (5) −0.0018 (5)
O3 0.0135 (6) 0.0207 (6) 0.0223 (6) 0.0008 (5) 0.0047 (4) −0.0024 (5)
O4 0.0134 (5) 0.0220 (6) 0.0176 (6) 0.0002 (5) 0.0030 (4) −0.0028 (5)
O5 0.0166 (6) 0.0202 (6) 0.0146 (5) 0.0028 (5) 0.0013 (4) 0.0013 (5)
O6 0.0159 (6) 0.0230 (7) 0.0213 (6) −0.0008 (5) 0.0043 (5) −0.0027 (5)
O7 0.0171 (6) 0.0198 (6) 0.0177 (6) 0.0017 (5) 0.0049 (4) 0.0003 (4)
O8 0.0147 (6) 0.0229 (6) 0.0147 (5) 0.0016 (5) 0.0022 (4) 0.0012 (4)

Geometric parameters (Å, º)

N1—C2 1.352 (2) Na2—O7 2.3612 (14)
N1—C6 1.360 (2) Na2—O4 2.3912 (14)
C2—N3 1.337 (2) Na2—O8 2.4142 (15)
C2—N10 1.375 (2) Na2—O6iii 2.4534 (14)
N3—C4 1.364 (2) Na2—O5 2.5067 (14)
C4—N9 1.364 (2) Na2—Na2iii 3.3871 (13)
C4—C5 1.394 (2) Na2—Na1iv 3.8095 (9)
C5—N7 1.390 (2) Na2—Na1v 4.1397 (9)
C5—C6 1.411 (2) O2—H2A 0.84 (3)
C6—O1 1.2970 (19) O2—H2B 0.89 (3)
N7—C8 1.338 (2) O3—H3A 0.87 (3)
C8—N9 1.365 (2) O3—H3B 0.87 (3)
C8—H8 0.94 (2) O4—H4A 0.85 (3)
N10—H10A 0.91 (3) O4—H4B 0.85 (3)
N10—H10B 0.91 (3) O5—H5C 0.81 (3)
Na1—O2 2.3447 (14) O5—H5D 0.78 (3)
Na1—O8i 2.3715 (14) O6—Na2iii 2.4534 (14)
Na1—O3 2.4153 (14) O6—H6A 0.79 (3)
Na1—O7ii 2.4440 (14) O6—H6B 0.90 (3)
Na1—O4 2.4467 (14) O7—Na1v 2.4440 (14)
Na1—O5 2.4972 (14) O7—H7A 0.88 (3)
Na1—Na2 3.4006 (9) O7—H7B 0.85 (3)
Na1—Na2i 3.8095 (9) O8—Na1iv 2.3716 (14)
Na1—Na2ii 4.1397 (9) O8—H8A 0.84 (3)
Na2—O6 2.3502 (14) O8—H8B 0.82 (3)
C2—N1—C6 119.30 (14) O4—Na2—O5 74.47 (4)
N3—C2—N1 127.87 (15) O8—Na2—O5 81.04 (5)
N3—C2—N10 116.55 (15) O6iii—Na2—O5 160.17 (5)
N1—C2—N10 115.49 (15) O6—Na2—Na2iii 46.41 (3)
C2—N3—C4 112.80 (14) O7—Na2—Na2iii 83.17 (4)
N3—C4—N9 126.26 (14) O4—Na2—Na2iii 137.16 (5)
N3—C4—C5 124.10 (15) O8—Na2—Na2iii 91.01 (4)
N9—C4—C5 109.64 (14) O6iii—Na2—Na2iii 43.93 (3)
N7—C5—C4 108.93 (14) O5—Na2—Na2iii 148.16 (5)
N7—C5—C6 132.26 (14) O6—Na2—Na1 123.50 (4)
C4—C5—C6 118.80 (15) O7—Na2—Na1 69.18 (4)
O1—C6—N1 119.48 (15) O4—Na2—Na1 46.01 (3)
O1—C6—C5 123.43 (15) O8—Na2—Na1 116.92 (4)
N1—C6—C5 117.09 (14) O6iii—Na2—Na1 133.71 (4)
C8—N7—C5 102.23 (14) O5—Na2—Na1 47.07 (3)
N7—C8—N9 116.93 (16) Na2iii—Na2—Na1 152.07 (3)
N7—C8—H8 120.6 (14) O6—Na2—Na1iv 61.78 (4)
N9—C8—H8 122.5 (14) O7—Na2—Na1iv 145.56 (4)
C4—N9—C8 102.28 (13) O4—Na2—Na1iv 130.44 (4)
C2—N10—H10A 115 (2) O8—Na2—Na1iv 36.86 (3)
C2—N10—H10B 114.3 (19) O6iii—Na2—Na1iv 88.83 (4)
H10A—N10—H10B 121 (3) O5—Na2—Na1iv 86.14 (4)
O2—Na1—O8i 129.23 (5) Na2iii—Na2—Na1iv 69.95 (2)
O2—Na1—O3 80.05 (5) Na1—Na2—Na1iv 133.15 (2)
O8i—Na1—O3 80.22 (5) O6—Na2—Na1v 82.59 (4)
O2—Na1—O7ii 81.28 (5) O7—Na2—Na1v 31.10 (3)
O8i—Na1—O7ii 82.37 (5) O4—Na2—Na1v 90.17 (4)
O3—Na1—O7ii 137.08 (5) O8—Na2—Na1v 138.65 (4)
O2—Na1—O4 89.29 (5) O6iii—Na2—Na1v 55.22 (4)
O8i—Na1—O4 133.29 (5) O5—Na2—Na1v 139.21 (4)
O3—Na1—O4 82.51 (5) Na2iii—Na2—Na1v 59.82 (2)
O7ii—Na1—O4 135.46 (5) Na1—Na2—Na1v 95.369 (16)
O2—Na1—O5 133.89 (5) Na1iv—Na2—Na1v 129.771 (19)
O8i—Na1—O5 90.29 (5) Na1—O2—H2A 133 (2)
O3—Na1—O5 136.66 (5) Na1—O2—H2B 110.3 (16)
O7ii—Na1—O5 82.01 (5) H2A—O2—H2B 104 (2)
O4—Na1—O5 73.70 (5) Na1—O3—H3A 115 (2)
O2—Na1—Na2 133.95 (4) Na1—O3—H3B 114.2 (19)
O8i—Na1—Na2 92.44 (4) H3A—O3—H3B 110 (3)
O3—Na1—Na2 90.63 (4) Na2—O4—Na1 89.31 (5)
O7ii—Na1—Na2 129.14 (4) Na2—O4—H4A 117.3 (18)
O4—Na1—Na2 44.68 (3) Na1—O4—H4A 101.7 (18)
O5—Na1—Na2 47.31 (3) Na2—O4—H4B 127.2 (17)
O2—Na1—Na2i 91.59 (4) Na1—O4—H4B 112.0 (18)
O8i—Na1—Na2i 37.64 (3) H4A—O4—H4B 105 (2)
O3—Na1—Na2i 68.95 (4) Na1—O5—Na2 85.62 (4)
O7ii—Na1—Na2i 73.34 (4) Na1—O5—H5C 105 (2)
O4—Na1—Na2i 150.82 (4) Na2—O5—H5C 99 (2)
O5—Na1—Na2i 123.71 (4) Na1—O5—H5D 96 (2)
Na2—Na1—Na2i 126.913 (19) Na2—O5—H5D 148 (2)
O2—Na1—Na2ii 67.43 (4) H5C—O5—H5D 111 (3)
O8i—Na1—Na2ii 74.73 (4) Na2—O6—Na2iii 89.65 (5)
O3—Na1—Na2ii 107.25 (4) Na2—O6—H6A 128 (2)
O7ii—Na1—Na2ii 29.94 (3) Na2iii—O6—H6A 104 (2)
O4—Na1—Na2ii 151.97 (4) Na2—O6—H6B 124.0 (17)
O5—Na1—Na2ii 110.76 (4) Na2iii—O6—H6B 100.6 (17)
Na2—Na1—Na2ii 155.43 (3) H6A—O6—H6B 103 (3)
Na2i—Na1—Na2ii 50.230 (19) Na2—O7—Na1v 118.96 (6)
O6—Na2—O7 84.18 (5) Na2—O7—H7A 117.7 (19)
O6—Na2—O4 166.81 (6) Na1v—O7—H7A 104.2 (19)
O7—Na2—O4 83.95 (5) Na2—O7—H7B 112.8 (18)
O6—Na2—O8 98.31 (5) Na1v—O7—H7B 99.0 (18)
O7—Na2—O8 169.31 (5) H7A—O7—H7B 101 (3)
O4—Na2—O8 94.41 (5) Na1iv—O8—Na2 105.50 (5)
O6—Na2—O6iii 90.35 (5) Na1iv—O8—H8A 119.6 (18)
O7—Na2—O6iii 86.16 (5) Na2—O8—H8A 103.7 (19)
O4—Na2—O6iii 94.57 (5) Na1iv—O8—H8B 115.2 (18)
O8—Na2—O6iii 83.44 (5) Na2—O8—H8B 105.6 (19)
O6—Na2—O5 104.03 (5) H8A—O8—H8B 106 (3)
O7—Na2—O5 108.55 (5)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x, −y, −z+1; (iv) −x, y−1/2, −z+1/2; (v) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···N9ii 0.84 (3) 1.97 (3) 2.7875 (19) 168 (3)
O2—H2B···N3 0.89 (3) 2.08 (3) 2.9582 (19) 167 (2)
O3—H3A···O5i 0.87 (3) 2.08 (3) 2.9200 (18) 163 (3)
O3—H3B···N3 0.87 (3) 1.95 (3) 2.8038 (18) 166 (3)
O4—H4A···N1vi 0.85 (3) 1.96 (3) 2.8093 (19) 177 (3)
O4—H4B···N9 0.85 (3) 2.14 (3) 2.9866 (19) 176 (2)
O5—H5C···O1vi 0.81 (3) 1.96 (3) 2.7581 (18) 168 (3)
O6—H6A···O2iv 0.79 (3) 2.02 (3) 2.7938 (19) 167 (3)
O6—H6B···N7vii 0.90 (3) 2.01 (3) 2.909 (2) 173 (2)
O7—H7A···O1vii 0.88 (3) 1.95 (3) 2.7867 (17) 160 (3)
O7—H7B···O3 0.85 (3) 1.92 (3) 2.7608 (18) 168 (3)
O8—H8A···O1vi 0.84 (3) 1.99 (3) 2.8303 (17) 171 (3)
O8—H8B···N7viii 0.82 (3) 1.98 (3) 2.7938 (19) 171 (3)
O5—H5D···O1ix 0.78 (3) 2.02 (3) 2.7835 (17) 164 (3)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z−1/2; (iv) −x, y−1/2, −z+1/2; (vi) −x+1, y−1/2, −z+1/2; (vii) x−1, y, z; (viii) −x+1, −y, −z+1; (ix) x−1, −y+1/2, z−1/2.

References

  1. Blackburn, G. M., Gait, M. J., Loakes, D. & Williams, D. M. (2006). Editors. Nucleic acids in Chemistry and Biology, 3rd ed. Cambridge: RSC Publishing.
  2. Broomhead, J. M. (1951). Acta Cryst. 4, 92–100.
  3. Burrows, C. J. & Muller, J. G. (1998). Chem. Rev. 98, 1109–1152. [DOI] [PubMed]
  4. Cooke, M. S., Evans, M. D., Dizdaroglu, M. & Lunec, J. (2003). FASEB J. 17, 1195–1214. [DOI] [PubMed]
  5. CrystalMaker (2010). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.
  6. Guille, K. & Clegg, W. (2006). Acta Cryst. C62, o515–o517. [DOI] [PubMed]
  7. Gur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. (2014). J. Am. Chem. Soc. 136, 17236–17242. [DOI] [PubMed]
  8. Gur, D., Politi, Y., Sivan, B., Fratzl, P., Weiner, S. & Addadi, L. (2013). Angew. Chem. Int. Ed. 52, 388–391. [DOI] [PubMed]
  9. Iball, J. & Wilson, H. R. (1965). Proc. R. Soc. London A, 288, 418–439.
  10. Kasai, H. (1997). Mutat. Res. Rev. Mutat. Res. 387, 147–163.
  11. Land, M. (1972). Prog. Biophys. Mol. Biol. 24, 75–106. [DOI] [PubMed]
  12. Melvin, T., Botchway, S., Parker, A. W. & Oneill, P. (1995). J. Chem. Soc. Chem. Commun. pp. 653–654.
  13. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  14. Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226–235. Chester: International Union of Crystallography.
  15. Parker, A. R. (2000). J. Opt. A Pure Appl. Opt. 2, R15–R28.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Steenken, S. & Jovanovic, S. V. (1997). J. Am. Chem. Soc. 119, 617–618.
  20. Thewalt, U., Bugg, C. E. & Marsh, R. E. (1971). Acta Cryst. B27, 2358–2363.
  21. Wei, C. (1977). Cryst. Struct. Commun. 6, 525–529.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015003163/pk2539sup1.cif

e-71-00281-sup1.cif (240.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003163/pk2539Isup2.hkl

e-71-00281-Isup2.hkl (215.7KB, hkl)

CCDC reference: 1049453

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES