Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 13;71(Pt 3):o165–o166. doi: 10.1107/S2056989015002674

Crystal structure of diethyl 2,2′-[((1E,1′E)-{[(1R,4R)-cyclo­hexane-1,4-di­yl]bis­(aza­nylyl­idene)}bis­(methanylyl­idene))bis­(1H-pyrrole-2,1-di­yl)]di­acetate

Jasim Alshawi a, Muoayed Yousif a, Karzan H Zangana b, Inigo J Vitorica Yrezabal b, Richard Winpenny b, Mohamad J Al-Jeboori c,*
PMCID: PMC4350751  PMID: 25844229

Abstract

The whole mol­ecule of the title compound, C24H32N4O4, is generated by inversion symmetry. The cyclo­hexane ring adopts a chair conformation and the conformation about the C=N bonds is E. The pyrrole rings have an anti confirmation with respect to the cyclo­hexane moiety and the ethyl acetate groups have extended conformations. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds forming chains, enclosing R 2 2(10) ring motifs with inversion symmetry, propagating parallel to the (101) plane.

Keywords: crystal structure, Schiff base, bis­pyrrole, C—H⋯O hydrogen bonding

Related literature  

For general background on the applications of Schiff bases and the use of pyrrole compounds, see: Köse et al. (2015); Trofimov et al. (2015). For the synthesis of di­pyrrole Schiff bases ligands, see: Meghdadi et al. (2010); Munro et al. (2004). For the synthesis of pyrrole ester precursors, see: Koriatopoulou et al. (2008); Singh & Pal (2010). For the preparation of Schiff bases, see: Yang et al. (2004); Ourari et al. (2013).graphic file with name e-71-0o165-scheme1.jpg

Experimental  

Crystal data  

  • C24H32N4O4

  • M r = 440.54

  • Triclinic, Inline graphic

  • a = 8.5531 (6) Å

  • b = 8.8379 (7) Å

  • c = 9.6492 (9) Å

  • α = 115.166 (9)°

  • β = 92.105 (7)°

  • γ = 113.288 (8)°

  • V = 587.68 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.4 × 0.3 × 0.3 mm

Data collection  

  • Agilent SuperNova (single source at offset, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.933, T max = 1.000

  • 4657 measured reflections

  • 2734 independent reflections

  • 1827 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.124

  • S = 1.07

  • 2734 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) Gobal, I. DOI: 10.1107/S2056989015002674/su5080sup1.cif

e-71-0o165-sup1.cif (170.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002674/su5080Isup2.hkl

e-71-0o165-Isup2.hkl (134.2KB, hkl)

. DOI: 10.1107/S2056989015002674/su5080fig1.tif

A view of the mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015002674/su5080fig2.tif

A view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are drawn as dashed lines (see Table 1 for details; H atom not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1048163

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C14H14AO16i 0.97 2.50 3.317(3) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Iraqi Ministry for Higher Education for providing six months funding for JA’s PhD scholarship.

supplementary crystallographic information

S1. Synthesis

The title compound was prepared in a two step procedure:

Synthesis of ethyl (2-formyl-1H-pyrrole-1-yl)-acetate (L): prepared by reported procedures (Koriatopoulou et al., 2008; Singh & Pal, 2010) as follows: To a mixture of 1H-pyrrole-2-carbaldehyde (1.00 g, 10.51 mmol), K2CO3 (2.90g, 21.02 mmol) and (2.64 g, 10.51 mmol) of 18-crown-6 in dry 1,4-dioxane (20ml), was added drop wise a solution of ethyl bromo­acetate (2.00 g, 12 mmol) in dry 1,4-dioxane (20 ml), over a period of 30 min. The reaction mixture was allowed to reflux under a nitro­gen atmosphere for 6 h, and then the solvent was removed under reduced pressure. Water (50ml) was added to the residue, and the mixture was extracted with ethyl acetate (3 × 15ml). The combined organic layers were washed with brine (15 ml), and then dried over Na2SO4. The solvent was removed under reduced pressure, and the oily residue was purified by flash chromatography with an eluent mixture (33% ethyl acetate / hexane), giving compound (L) as a yellow oil product (yield: 0.75 g, 75%). NMR data (p.p.m), δH: (500 MHz, CDCl3): 1.20 (3H, t, C12—H), 4.15 (2H, q, C11—H), 4.97 (2H, s, C8—H), 6.21 (1H, t, C3—H), 6.84 (1H, d, C4—H), 6.90 (1H, d, C2—H) and 9.45 (1H, s, C6—H); δC (125.75 MHz, CDCl3), 14.13 C12, 50.25 C8, 61.63 C11, 110.20 C3, 124.61 C4, 131.71 C5 and 132.10 C2. C=O for the carboxyl­ate moiety at 168.37 (C12) and at 179.74 for C6. The positive ES mass spectrum at m/z = 182.4 (M+H)+ (62%) for C9H11NO3, requires = 181.1. The other peaks detected at m/z =153.4 (100%), 109.3 (6%), 95 (9%) and 67 (4%) correspond to [M—CH2CH3]+, [M-(CH2CH3+CO2)]+, [M-(CH2CH3+CO2+CH2)]+ and [M-(CH2CH3+CO2+CH2+CO)]+, respectively. IR (ATR cm-1): 1650 ν(C=O) aldehyde moiety. 1710 ν(C=O) ester group.

Synthesis of the title Schiff-base: performed using conventional procedures (Yang et al., 2004; Ourari et al., 2013). To a mixture of L (1.81 g, 10 mmol) in ethanol (20 ml) with 3 drops of glacial acetic acid, a solution of 1,4-di­amino­cyclo­hexan (0.57 g, 5 mmol) in ethanol (20ml) was added drop wise over a period of 20 min. The reaction mixture was allowed to reflux for 3h, and then cooled to room temperature. A white precipitate was collected by filtration and recrystallised from ethanol (yield: 1.09g, 60%). Crystals were obtained by slow evaporation of a solution in methanol/acetone. NMR data (p.p.m), δH (500 MHz, CDCl3): 1.19 (6H, t,C15, 15–H), 1.47 (C10, 10- ,4H, q), δH = 1.67 (C9, 9-, 4H, q), 2.94 (2H, p, C8, 8–H), 4.10 (4H, q,C14, 14–H), 5.03 (C11, 11–H, 4H, s), 6.11 (2H, t, C3, 3–H), 6.38 (2H, d, C4, 4–H), 6.61 (2H, d, C2, 2–H) and 8.07 (2H, s, C6, 6–H); δC (125.75 MHz, CDCl3), 14.28 (C15, 15-). 32.61 (C10, 10- and C19, 9- ), 51.13 (C11, 11-), 61.07 (C14, 14- ), 68.8 (C8, 8-), 108.53 (C2, 2-), 116.58 (C5, 5-), 127.69 (C3, 3-), 129.93 (C4, 4-), 150.04 (C6, 6-), C=O 169.37 (C12, 12-). The positive ES mass spectrum at m/z = 441.52 (M+H)+ (100%) for C24H32N4O4, requires = 440.24. The other peaks detected at m/z = 412.42 (5%), 383 (3%), 295.19 (9%) and 267.1 (4%) correspond to [M—CH2CH3]+, [M-(2CH2CH3)]+, [M-(2CH2CH3+2CO2)]+ and [M(2CH2CH3+2CO2+2CH2)]+, respectively. IR (ATR, cm-1): 1580 (C=N), 1630 (C=O).

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95 - 0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

S3. Comment

The whole molecule of the title compound, Fig.1, is generated by inversion symmetry. The cyclohexane ring adopts a chair conformation and the conformation about the C═N bonds is E. The pyrrole rings crystallize in the anti-confirmation with respect to the cyclohexane moiety and the ethyl acetate moieties have extended conformations.

In the crystal, molecules are linked by pairs of C—H···O hydrogen bonds forming chains, enclosing R22(10) ring motifs with inversion symmetry, propagating parallel to plane (101); see Table 1 and Fig. 2.

Infrared spectrum indicated typical absorbance bands of the functional –C═ N and carbonyl –C═O at 1580 and 1630 cm-1, respectively. The positive ES mass spectrum of the bis Schiff-base showed a parent ion peak at m/z = 441.52 (M+H)+, corresponding to C26H32N4O4, for which the required value is 440.24. The N7═C6 bond distance [1.270 (2) Å] is shorter than the N2—C8 bond distance [1.458 (2) Å], indicating a double bond order. However, the N1—C5 bond distance [1.384 (2) Å] indicates resonance has occurred in the pyrrole system between the lone pair electron of the nitrogen atom and the pyrrole ring.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the b axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are drawn as dashed lines (see Table 1 for details; H atom not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C24H32N4O4 Z = 1
Mr = 440.54 F(000) = 236
Triclinic, P1 Dx = 1.245 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5531 (6) Å Cell parameters from 1515 reflections
b = 8.8379 (7) Å θ = 3.3–26.7°
c = 9.6492 (9) Å µ = 0.09 mm1
α = 115.166 (9)° T = 150 K
β = 92.105 (7)° Block, colourless
γ = 113.288 (8)° 0.4 × 0.3 × 0.3 mm
V = 587.68 (10) Å3

Data collection

Agilent SuperNova (single source at offset, Atlas) diffractometer 2734 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1827 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.028
Detector resolution: 10.37 pixels mm-1 θmax = 29.4°, θmin = 2.9°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −10→12
Tmin = 0.933, Tmax = 1.000 l = −13→8
4657 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.1039P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2734 reflections Δρmax = 0.18 e Å3
146 parameters Δρmin = −0.25 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O13 0.46898 (16) 0.46998 (17) 0.19574 (15) 0.0317 (3)
O16 0.63475 (17) 0.71083 (17) 0.43494 (15) 0.0338 (4)
N1 0.67517 (19) 0.9650 (2) 0.32094 (18) 0.0274 (4)
N7 0.87176 (19) 0.7539 (2) 0.17968 (18) 0.0313 (4)
C12 0.5599 (2) 0.6517 (3) 0.3013 (2) 0.0270 (4)
C6 0.9477 (2) 0.9265 (3) 0.2821 (2) 0.0297 (5)
H6 1.0695 0.9854 0.3163 0.036*
C5 0.8559 (2) 1.0361 (2) 0.3483 (2) 0.0275 (4)
C10 0.9066 (2) 0.4733 (2) 0.1181 (2) 0.0311 (5)
H10A 0.7851 0.3992 0.0575 0.037*
H10B 0.9087 0.4935 0.2252 0.037*
C11 0.5474 (2) 0.7689 (2) 0.2290 (2) 0.0279 (4)
H11A 0.5653 0.7192 0.1233 0.033*
H11B 0.4302 0.7597 0.2201 0.033*
C2 0.6355 (3) 1.1083 (3) 0.4039 (2) 0.0317 (5)
H2 0.5229 1.0970 0.4061 0.038*
C9 1.0097 (2) 0.3654 (3) 0.0461 (2) 0.0307 (5)
H9A 0.9545 0.2438 0.0420 0.037*
H9B 1.1280 0.4334 0.1127 0.037*
C8 0.9819 (2) 0.6620 (2) 0.1201 (2) 0.0304 (5)
H8 1.1007 0.7412 0.1897 0.036*
C4 0.9269 (3) 1.2260 (3) 0.4484 (2) 0.0340 (5)
H4 1.0459 1.3098 0.4864 0.041*
C3 0.7880 (3) 1.2712 (3) 0.4833 (2) 0.0377 (5)
H3 0.7980 1.3898 0.5483 0.045*
C14 0.4577 (3) 0.3383 (3) 0.2513 (2) 0.0400 (5)
H14A 0.4025 0.3576 0.3392 0.048*
H14B 0.5743 0.3562 0.2869 0.048*
C15 0.3512 (3) 0.1451 (3) 0.1175 (3) 0.0544 (7)
H15A 0.4111 0.1242 0.0342 0.082*
H15B 0.2388 0.1314 0.0787 0.082*
H15C 0.3349 0.0551 0.1534 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O13 0.0352 (8) 0.0259 (7) 0.0293 (8) 0.0091 (6) 0.0017 (6) 0.0141 (6)
O16 0.0378 (8) 0.0349 (7) 0.0245 (8) 0.0133 (6) 0.0036 (6) 0.0140 (6)
N1 0.0295 (8) 0.0254 (8) 0.0269 (9) 0.0133 (7) 0.0060 (6) 0.0114 (7)
N7 0.0275 (8) 0.0302 (8) 0.0281 (9) 0.0150 (7) 0.0050 (7) 0.0054 (7)
C12 0.0238 (10) 0.0303 (10) 0.0253 (10) 0.0116 (8) 0.0079 (8) 0.0124 (8)
C6 0.0255 (10) 0.0337 (10) 0.0262 (10) 0.0119 (9) 0.0061 (8) 0.0126 (9)
C5 0.0291 (10) 0.0282 (10) 0.0231 (10) 0.0120 (8) 0.0062 (8) 0.0115 (8)
C10 0.0250 (10) 0.0340 (10) 0.0249 (10) 0.0115 (9) 0.0054 (8) 0.0083 (8)
C11 0.0250 (10) 0.0305 (10) 0.0265 (10) 0.0120 (8) 0.0052 (8) 0.0129 (8)
C2 0.0412 (11) 0.0355 (10) 0.0299 (11) 0.0252 (10) 0.0127 (9) 0.0178 (9)
C9 0.0259 (10) 0.0280 (10) 0.0300 (11) 0.0104 (8) 0.0039 (8) 0.0089 (8)
C8 0.0204 (9) 0.0302 (10) 0.0293 (11) 0.0116 (8) 0.0034 (7) 0.0050 (8)
C4 0.0361 (11) 0.0269 (10) 0.0308 (11) 0.0105 (9) 0.0062 (9) 0.0106 (9)
C3 0.0519 (13) 0.0269 (10) 0.0341 (12) 0.0207 (10) 0.0109 (10) 0.0118 (9)
C14 0.0480 (13) 0.0336 (11) 0.0396 (13) 0.0130 (10) 0.0065 (10) 0.0240 (10)
C15 0.0690 (16) 0.0316 (11) 0.0498 (15) 0.0101 (12) −0.0021 (12) 0.0217 (11)

Geometric parameters (Å, º)

O13—C12 1.336 (2) C6—C5 1.441 (2)
O13—C14 1.448 (2) C5—C4 1.375 (2)
O16—C12 1.203 (2) C10—C9 1.522 (2)
N1—C5 1.384 (2) C10—C8 1.522 (3)
N1—C11 1.452 (2) C2—C3 1.365 (3)
N1—C2 1.363 (2) C9—C8i 1.526 (3)
N7—C6 1.270 (2) C8—C9i 1.526 (3)
N7—C8 1.458 (2) C4—C3 1.405 (3)
C12—C11 1.506 (3) C14—C15 1.490 (3)
C12—O13—C14 116.15 (15) C4—C5—C6 127.83 (17)
C5—N1—C11 126.32 (15) C8—C10—C9 111.74 (14)
C2—N1—C5 108.70 (15) N1—C11—C12 112.58 (15)
C2—N1—C11 124.84 (15) N1—C2—C3 108.91 (17)
C6—N7—C8 117.71 (15) C10—C9—C8i 111.47 (17)
O13—C12—C11 109.47 (16) N7—C8—C10 109.64 (14)
O16—C12—O13 124.75 (19) N7—C8—C9i 109.49 (17)
O16—C12—C11 125.74 (17) C10—C8—C9i 110.20 (15)
N7—C6—C5 123.74 (17) C5—C4—C3 107.99 (18)
N1—C5—C6 124.91 (15) C2—C3—C4 107.14 (17)
C4—C5—N1 107.27 (16) O13—C14—C15 107.88 (18)
O13—C12—C11—N1 −166.07 (14) C11—N1—C5—C6 3.5 (3)
O16—C12—C11—N1 16.3 (3) C11—N1—C5—C4 −176.36 (17)
N1—C5—C4—C3 0.4 (2) C11—N1—C2—C3 176.43 (17)
N1—C2—C3—C4 −0.3 (2) C2—N1—C5—C6 179.33 (19)
N7—C6—C5—N1 6.4 (3) C2—N1—C5—C4 −0.6 (2)
N7—C6—C5—C4 −173.7 (2) C2—N1—C11—C12 −110.7 (2)
C12—O13—C14—C15 179.68 (16) C9—C10—C8—N7 176.06 (15)
C6—N7—C8—C10 134.27 (18) C9—C10—C8—C9i 55.5 (2)
C6—N7—C8—C9i −104.71 (19) C8—N7—C6—C5 178.46 (18)
C6—C5—C4—C3 −179.5 (2) C8—C10—C9—C8i −56.2 (2)
C5—N1—C11—C12 64.5 (2) C14—O13—C12—O16 2.0 (3)
C5—N1—C2—C3 0.6 (2) C14—O13—C12—C11 −175.70 (15)
C5—C4—C3—C2 0.0 (2)

Symmetry code: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O16ii 0.97 2.50 3.317 (3) 142

Symmetry code: (ii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5080).

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Koriatopoulou, K., Karousis, N. & Varvounis, G. (2008). Tetrahedron, 64, 10009–10013.
  3. Köse, M., Ceyhan, G., Tümer, M., Demirtaş, İ., Gönül, İ. & McKee, V. (2015). Spectrochim. Acta Part A, 137, 477–485. [DOI] [PubMed]
  4. Meghdadi, S., Amirnasr, M., Mereiter, K. & Karimi Abdolmaleki, M. (2010). Acta Cryst. E66, m332–m333. [DOI] [PMC free article] [PubMed]
  5. Munro, O., Strydom, S. & Grimmer, C. (2004). New J. Chem. 28, 34–42.
  6. Ourari, A., Aggoun, D. & Ouahab, L. (2013). Inorg. Chem. Commun. 33, 118–124.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Singh, K. & Pal, D. (2010). J. Serb. Chem. Soc. 75, 917–927.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Trofimov, B. A., Mikhaleva, A., Schmidt, E. Y. & Sobenina, L. N. (2015). In Chemistry of Pyrroles. Boca Raton: CRC Press.
  12. Yang, L., Shan, X., Chen, Q., Wang, Z. & Ma, J. S. (2004). Eur. J. Inorg. Chem. 2004, 1474–1477.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Gobal, I. DOI: 10.1107/S2056989015002674/su5080sup1.cif

e-71-0o165-sup1.cif (170.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015002674/su5080Isup2.hkl

e-71-0o165-Isup2.hkl (134.2KB, hkl)

. DOI: 10.1107/S2056989015002674/su5080fig1.tif

A view of the mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015002674/su5080fig2.tif

A view along the b axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are drawn as dashed lines (see Table 1 for details; H atom not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1048163

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES