Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 25;71(Pt 3):o206–o207. doi: 10.1107/S2056989015003576

Crystal structure of ethyl 6-methyl-2-oxo-4-(3,4,5-tri­meth­oxy­phen­yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

J J Novina a, G Vasuki b,*, M Suresh c, M Syed Ali Padusha c
PMCID: PMC4350754  PMID: 25844251

Abstract

In the title compound, C17H22N2O6, the di­hydro­pyrimidine ring adopts a flattened boat conformation. The dihedral angle between the benzene ring and the mean plane of the di­hydro­pyrimidine ring is 75.25 (6)°. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif which are linked through N—H⋯O and weak C—H⋯O hydrogen bonds. These, together with π–π ring inter­actions [centroid–centroid distance = 3.7965 (10) Å], give an overall three-dimensional structure.

Keywords: crystal structure, pyrimidine, hydrogen bonds, centrosymmetric dimer

Related literature  

For general background and the biological activity of di­hydro­pyrimidino­nes, see: Jawale et al. (2011); Beşoluk et al. (2010); Karade et al. (2007).graphic file with name e-71-0o206-scheme1.jpg

Experimental  

Crystal data  

  • C17H22N2O6

  • M r = 350.37

  • Triclinic, Inline graphic

  • a = 10.1447 (3) Å

  • b = 10.1919 (2) Å

  • c = 10.8724 (2) Å

  • α = 117.882 (1)°

  • β = 101.371 (1)°

  • γ = 105.498 (1)°

  • V = 886.40 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.970, T max = 0.995

  • 13060 measured reflections

  • 3659 independent reflections

  • 3009 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.154

  • S = 1.06

  • 3659 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015003576/zs2327sup1.cif

e-71-0o206-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003576/zs2327Isup2.hkl

e-71-0o206-Isup2.hkl (179.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003576/zs2327Isup3.cml

. DOI: 10.1107/S2056989015003576/zs2327fig1.tif

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015003576/zs2327fig2.tif

Cystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (Table 1). For clarity only the H atoms participating in these inter­actions are shown.

. DOI: 10.1107/S2056989015003576/zs2327fig3.tif

A view showing the π–π inter­actions. The H atoms are omitted for the sake of clarity.

CCDC reference: 1050728

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1NO6i 0.86 2.01 2.867(2) 171
N2H2NO4ii 0.86 2.39 3.1331(19) 145
C8H8AO1iii 0.96 2.46 3.325(3) 149
C9H9AO1iv 0.96 2.56 3.491(3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

supplementary crystallographic information

S1. Comment

Dihydropyrimidinones (DHPMs) occupy a special place in the areas of natural and synthetic organic chemistry, because of their therapeutic and pharmacological properties. The dihydropyrimidinone scaffold has emerged as an integral backbone for several drugs used as calcium channel blockers as well as anti-hypertensive and anti-cancer agents. DHPMs also exhibit anti-diabetic activity (Jawale et al., 2011). Furthermore, the 2-oxodihydropyrimidine-5-carboxylate core unit is also found in many marine natural products, including the batzelladine alkaloids, which were found to be potent HIV gp-120-CD4 inhibitors (Karade et al., 2007; Beşoluk et al., 2010). Because of this background and in order to obtain detailed information on its molecular conformation, the X-ray structure of the title compound, C17H22N2O2 has been determined and is presented herein.

In the racemic title compound (Fig. 1) the dihydropyrimidone ring adopts a flattened boat conformation with the atom C13 and N2 deviating by -0.1218 (11) and 0.1432 (12) Å, respectively from the least squares plane defined by the remaining atoms N1/C11/C12/C14 in the ring. The puckering parameters are q2 = 0.207 Å, q3 = -0.074 Å, Q = 0.220 Å, Θ = 109.7° and Φ = 35.0°. The C1—C6 benzene ring is twisted with respect to the dihydropyrimidinone ring, with an inter-ring dihedral angle of 75.25 (9)°. The ethyl acetate group attached to the pyrimidine ring shows an extended conformation [torsion angle C12—C15—O2—C16 = -177.55 (20)°]. The methoxy two substituent groups at C3 and C5 are almost coplanar with the benzene ring [torsion angles C2—C3—O3—C7 = 7.7 (3)° and C6—C5—O5—C9 = -5.1 (3)°] whereas the central group at C4 deviates significantly from the benzene plane [C3—C4—O4—C8 = 102.7 (2)°].

In the crystal, molecules are linked via a pair of N—H···O hydrogen bonds (Table 1) forming a centrosymmetric cyclic dimer with an R22(8) ring motif. The inter-dimer N2—H···O3ii and N2—H···O4ii interactions constitute a bifurcated association generating an asymmetric R21(5) ring motif. The one-dimensional chain structures extend across [101] (Fig. 2) while the crystal structure is further stabilized by weak C—H···O hydrogen bonds and by π–π stacking interactions between inversion-related benzene rings [ring centroid–centroid distance = 3.7965 (10)Å] (Fig. 3), giving an overall three-dimensional structure.

S2. Experimental

A mixture of ethyl acetoacetate (0.13 ml, 1 mmol), 3,4,5-trimethoxybenzaldehyde (0.196 g, 1 mmol), and urea (0.18 g, 3 mmol) in ethanol (5 ml) was heated under reflux in the presence of cerium chloride heptahydrate (25%) for 1 h (monitored by TLC). After the completion of the reaction, the reaction mixture was cooled to room temperature and poured onto crushed ice and stirred for 5–10 min. The solid was separated and filtered under suction, washed with ice-cold water (50 ml) and then recrystallized from hot ethanol to afford the pure product [m.p. 445 K; yield 96%].

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances fixed in the range 0.93–0.97 Å and N—H = 0.86 Å with Uiso(H) = 1.5Ueq(CH3) and 1.2Ueq(CH2, CH, NH).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Cystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (Table 1). For clarity only the H atoms participating in these interactions are shown.

Fig. 3.

Fig. 3.

A view showing the π–π interactions. The H atoms are omitted for the sake of clarity.

Crystal data

C17H22N2O6 Z = 2
Mr = 350.37 F(000) = 372
Triclinic, P1 Dx = 1.313 Mg m3
Hall symbol: -P 1 Melting point: 445 K
a = 10.1447 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.1919 (2) Å Cell parameters from 3659 reflections
c = 10.8724 (2) Å θ = 1.0–26.5°
α = 117.882 (1)° µ = 0.10 mm1
β = 101.371 (1)° T = 293 K
γ = 105.498 (1)° Block, colourless
V = 886.40 (4) Å3 0.20 × 0.15 × 0.10 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3659 independent reflections
Radiation source: fine-focus sealed tube 3009 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→12
Tmin = 0.970, Tmax = 0.995 k = −12→12
13060 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2863P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3659 reflections Δρmax = 0.60 e Å3
228 parameters Δρmin = −0.30 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.37112 (18) 0.3299 (2) 0.72474 (17) 0.0394 (4)
C2 0.44867 (19) 0.2873 (2) 0.80886 (18) 0.0410 (4)
H2 0.4009 0.1946 0.8073 0.049*
C3 0.59827 (19) 0.3837 (2) 0.89570 (18) 0.0415 (4)
C4 0.66902 (18) 0.5242 (2) 0.90186 (18) 0.0429 (4)
C5 0.5914 (2) 0.5645 (2) 0.8146 (2) 0.0477 (4)
C6 0.4429 (2) 0.4661 (2) 0.7249 (2) 0.0466 (4)
H6 0.3916 0.4918 0.6647 0.056*
C7 0.6280 (3) 0.2077 (3) 0.9753 (3) 0.0698 (6)
H7A 0.7016 0.2040 1.0427 0.105*
H7B 0.5992 0.1174 0.8743 0.105*
H7C 0.5433 0.2011 1.0028 0.105*
C8 0.9201 (2) 0.6153 (3) 0.9346 (2) 0.0652 (6)
H8A 1.0172 0.6907 1.0103 0.098*
H8B 0.9011 0.6404 0.8599 0.098*
H8C 0.9141 0.5062 0.8882 0.098*
C9 0.5979 (3) 0.7486 (3) 0.7382 (4) 0.0828 (8)
H9A 0.6640 0.8501 0.7591 0.124*
H9B 0.5124 0.7596 0.7590 0.124*
H9C 0.5679 0.6647 0.6343 0.124*
C10 0.0111 (2) 0.1030 (3) 0.2264 (2) 0.0599 (5)
H10A −0.0726 0.1254 0.2006 0.090*
H10B −0.0203 −0.0123 0.1806 0.090*
H10C 0.0824 0.1408 0.1908 0.090*
C11 0.07976 (19) 0.1893 (2) 0.39399 (19) 0.0445 (4)
C12 0.15090 (18) 0.1416 (2) 0.47179 (19) 0.0425 (4)
C13 0.20307 (18) 0.2357 (2) 0.64192 (18) 0.0410 (4)
H13 0.1699 0.1573 0.6694 0.049*
C14 0.0864 (2) 0.4142 (2) 0.62100 (19) 0.0455 (4)
C15 0.1840 (2) −0.0008 (2) 0.3951 (2) 0.0496 (4)
C16 0.2722 (3) −0.1808 (3) 0.4190 (3) 0.0833 (8)
H16A 0.3437 −0.1572 0.3764 0.100*
H16B 0.1855 −0.2781 0.3388 0.100*
C17 0.3362 (5) −0.2078 (4) 0.5344 (4) 0.1191 (13)
H17A 0.3634 −0.2977 0.4898 0.179*
H17B 0.2647 −0.2321 0.5754 0.179*
H17C 0.4223 −0.1113 0.6131 0.179*
N1 0.06044 (18) 0.33131 (19) 0.47041 (16) 0.0507 (4)
H1N 0.0304 0.3699 0.4205 0.061*
N2 0.13307 (16) 0.34918 (19) 0.69333 (16) 0.0447 (4)
H2N 0.1210 0.3761 0.7766 0.054*
O1 0.1753 (2) −0.07004 (19) 0.26618 (17) 0.0744 (5)
O2 0.23206 (16) −0.04531 (16) 0.48721 (16) 0.0609 (4)
O3 0.68614 (15) 0.35473 (16) 0.98399 (14) 0.0559 (4)
O4 0.81300 (14) 0.62806 (16) 1.00213 (14) 0.0542 (4)
O5 0.67016 (17) 0.70646 (19) 0.8294 (2) 0.0717 (5)
O6 0.06186 (17) 0.53697 (18) 0.68139 (15) 0.0598 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0405 (8) 0.0409 (8) 0.0349 (8) 0.0214 (7) 0.0128 (7) 0.0178 (7)
C2 0.0455 (9) 0.0391 (8) 0.0371 (8) 0.0222 (7) 0.0126 (7) 0.0189 (7)
C3 0.0465 (9) 0.0450 (9) 0.0316 (8) 0.0272 (7) 0.0116 (7) 0.0170 (7)
C4 0.0390 (8) 0.0457 (9) 0.0338 (8) 0.0192 (7) 0.0105 (6) 0.0153 (7)
C5 0.0468 (9) 0.0465 (9) 0.0505 (10) 0.0197 (8) 0.0179 (8) 0.0273 (8)
C6 0.0450 (9) 0.0532 (10) 0.0487 (10) 0.0246 (8) 0.0138 (8) 0.0324 (8)
C7 0.0782 (15) 0.0662 (13) 0.0680 (13) 0.0347 (12) 0.0081 (11) 0.0440 (11)
C8 0.0440 (10) 0.0744 (14) 0.0590 (12) 0.0240 (10) 0.0159 (9) 0.0256 (11)
C9 0.0771 (16) 0.0827 (17) 0.117 (2) 0.0329 (14) 0.0329 (15) 0.0762 (17)
C10 0.0654 (12) 0.0652 (12) 0.0397 (10) 0.0334 (10) 0.0109 (9) 0.0223 (9)
C11 0.0431 (9) 0.0451 (9) 0.0386 (9) 0.0197 (7) 0.0121 (7) 0.0190 (7)
C12 0.0385 (8) 0.0399 (8) 0.0397 (9) 0.0160 (7) 0.0099 (7) 0.0174 (7)
C13 0.0402 (8) 0.0438 (9) 0.0409 (9) 0.0207 (7) 0.0127 (7) 0.0240 (7)
C14 0.0454 (9) 0.0535 (10) 0.0405 (9) 0.0290 (8) 0.0156 (7) 0.0237 (8)
C15 0.0433 (9) 0.0399 (9) 0.0471 (10) 0.0154 (7) 0.0070 (7) 0.0157 (8)
C16 0.0882 (17) 0.0513 (12) 0.0835 (17) 0.0417 (12) 0.0098 (13) 0.0202 (12)
C17 0.142 (3) 0.094 (2) 0.107 (2) 0.079 (2) 0.012 (2) 0.0433 (19)
N1 0.0662 (10) 0.0574 (9) 0.0382 (8) 0.0390 (8) 0.0178 (7) 0.0269 (7)
N2 0.0461 (8) 0.0586 (9) 0.0364 (7) 0.0312 (7) 0.0170 (6) 0.0257 (7)
O1 0.0979 (12) 0.0630 (9) 0.0499 (9) 0.0456 (9) 0.0243 (8) 0.0172 (7)
O2 0.0668 (9) 0.0449 (7) 0.0571 (8) 0.0302 (7) 0.0086 (7) 0.0203 (6)
O3 0.0544 (8) 0.0581 (8) 0.0487 (7) 0.0271 (6) 0.0034 (6) 0.0289 (6)
O4 0.0419 (7) 0.0570 (8) 0.0397 (7) 0.0149 (6) 0.0088 (5) 0.0152 (6)
O5 0.0554 (8) 0.0653 (9) 0.0974 (12) 0.0163 (7) 0.0160 (8) 0.0564 (9)
O6 0.0778 (10) 0.0686 (9) 0.0446 (7) 0.0525 (8) 0.0231 (7) 0.0277 (7)

Geometric parameters (Å, º)

C1—C2 1.384 (2) C10—C11 1.501 (2)
C1—C6 1.384 (2) C10—H10A 0.9600
C1—C13 1.533 (2) C10—H10B 0.9600
C2—C3 1.389 (2) C10—H10C 0.9600
C2—H2 0.9300 C11—C12 1.344 (2)
C3—O3 1.368 (2) C11—N1 1.383 (2)
C3—C4 1.383 (3) C12—C15 1.468 (2)
C4—O4 1.382 (2) C12—C13 1.518 (2)
C4—C5 1.390 (3) C13—N2 1.464 (2)
C5—O5 1.368 (2) C13—H13 0.9800
C5—C6 1.387 (3) C14—O6 1.233 (2)
C6—H6 0.9300 C14—N2 1.338 (2)
C7—O3 1.406 (3) C14—N1 1.371 (2)
C7—H7A 0.9600 C15—O1 1.210 (2)
C7—H7B 0.9600 C15—O2 1.340 (2)
C7—H7C 0.9600 C16—O2 1.444 (3)
C8—O4 1.428 (2) C16—C17 1.472 (3)
C8—H8A 0.9600 C16—H16A 0.9700
C8—H8B 0.9600 C16—H16B 0.9700
C8—H8C 0.9600 C17—H17A 0.9600
C9—O5 1.410 (3) C17—H17B 0.9600
C9—H9A 0.9600 C17—H17C 0.9600
C9—H9B 0.9600 N1—H1N 0.8600
C9—H9C 0.9600 N2—H2N 0.8600
C2—C1—C6 120.13 (15) H10B—C10—H10C 109.5
C2—C1—C13 120.26 (15) C12—C11—N1 119.53 (15)
C6—C1—C13 119.40 (15) C12—C11—C10 127.51 (17)
C1—C2—C3 119.70 (16) N1—C11—C10 112.94 (15)
C1—C2—H2 120.1 C11—C12—C15 120.97 (16)
C3—C2—H2 120.2 C11—C12—C13 121.07 (15)
O3—C3—C4 114.49 (15) C15—C12—C13 117.94 (15)
O3—C3—C2 125.05 (16) N2—C13—C12 109.34 (13)
C4—C3—C2 120.42 (15) N2—C13—C1 109.29 (14)
O4—C4—C3 119.43 (15) C12—C13—C1 114.52 (14)
O4—C4—C5 120.85 (16) N2—C13—H13 107.8
C3—C4—C5 119.58 (16) C12—C13—H13 107.8
O5—C5—C6 124.58 (17) C1—C13—H13 107.8
O5—C5—C4 115.35 (16) O6—C14—N2 123.56 (16)
C6—C5—C4 120.03 (17) O6—C14—N1 120.72 (16)
C1—C6—C5 120.03 (16) N2—C14—N1 115.66 (15)
C1—C6—H6 120.0 O1—C15—O2 122.09 (18)
C5—C6—H6 120.0 O1—C15—C12 125.98 (18)
O3—C7—H7A 109.5 O2—C15—C12 111.89 (16)
O3—C7—H7B 109.5 O2—C16—C17 109.0 (2)
H7A—C7—H7B 109.5 O2—C16—H16A 109.9
O3—C7—H7C 109.5 C17—C16—H16A 109.9
H7A—C7—H7C 109.5 O2—C16—H16B 109.9
H7B—C7—H7C 109.5 C17—C16—H16B 109.9
O4—C8—H8A 109.5 H16A—C16—H16B 108.3
O4—C8—H8B 109.5 C16—C17—H17A 109.5
H8A—C8—H8B 109.5 C16—C17—H17B 109.5
O4—C8—H8C 109.5 H17A—C17—H17B 109.5
H8A—C8—H8C 109.5 C16—C17—H17C 109.5
H8B—C8—H8C 109.5 H17A—C17—H17C 109.5
O5—C9—H9A 109.5 H17B—C17—H17C 109.5
O5—C9—H9B 109.5 C14—N1—C11 123.90 (15)
H9A—C9—H9B 109.5 C14—N1—H1N 118.1
O5—C9—H9C 109.5 C11—N1—H1N 118.1
H9A—C9—H9C 109.5 C14—N2—C13 125.19 (14)
H9B—C9—H9C 109.5 C14—N2—H2N 117.4
C11—C10—H10A 109.5 C13—N2—H2N 117.4
C11—C10—H10B 109.5 C15—O2—C16 114.13 (17)
H10A—C10—H10B 109.5 C3—O3—C7 118.70 (15)
C11—C10—H10C 109.5 C4—O4—C8 113.93 (14)
H10A—C10—H10C 109.5 C5—O5—C9 117.35 (17)
C6—C1—C2—C3 1.3 (2) C6—C1—C13—N2 −52.6 (2)
C13—C1—C2—C3 −173.41 (15) C2—C1—C13—C12 −114.87 (17)
C1—C2—C3—O3 179.57 (16) C6—C1—C13—C12 70.4 (2)
C1—C2—C3—C4 1.8 (2) C11—C12—C15—O1 12.9 (3)
O3—C3—C4—O4 −5.5 (2) C13—C12—C15—O1 −165.48 (19)
C2—C3—C4—O4 172.46 (15) C11—C12—C15—O2 −169.40 (16)
O3—C3—C4—C5 178.81 (15) C13—C12—C15—O2 12.2 (2)
C2—C3—C4—C5 −3.2 (3) O6—C14—N1—C11 −177.32 (18)
O4—C4—C5—O5 3.7 (3) N2—C14—N1—C11 0.0 (3)
C3—C4—C5—O5 179.34 (16) C12—C11—N1—C14 −11.8 (3)
O4—C4—C5—C6 −174.07 (16) C10—C11—N1—C14 166.62 (18)
C3—C4—C5—C6 1.6 (3) O6—C14—N2—C13 −161.54 (18)
C2—C1—C6—C5 −2.9 (3) N1—C14—N2—C13 21.2 (3)
C13—C1—C6—C5 171.79 (16) C12—C13—N2—C14 −27.1 (2)
O5—C5—C6—C1 −176.06 (17) C1—C13—N2—C14 98.96 (19)
C4—C5—C6—C1 1.5 (3) O1—C15—O2—C16 0.3 (3)
N1—C11—C12—C15 −174.94 (16) C12—C15—O2—C16 −177.52 (18)
C10—C11—C12—C15 6.9 (3) C17—C16—O2—C15 174.6 (2)
N1—C11—C12—C13 3.4 (3) C4—C3—O3—C7 −174.43 (18)
C10—C11—C12—C13 −174.76 (18) C2—C3—O3—C7 7.7 (3)
C11—C12—C13—N2 13.6 (2) C3—C4—O4—C8 102.7 (2)
C15—C12—C13—N2 −167.97 (15) C5—C4—O4—C8 −81.7 (2)
C11—C12—C13—C1 −109.38 (18) C6—C5—O5—C9 −5.1 (3)
C15—C12—C13—C1 69.0 (2) C4—C5—O5—C9 177.3 (2)
C2—C1—C13—N2 122.09 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O6i 0.86 2.01 2.867 (2) 171
N2—H2N···O3ii 0.86 2.56 3.0629 (19) 118
N2—H2N···O4ii 0.86 2.39 3.1331 (19) 145
C8—H8A···O1iii 0.96 2.46 3.325 (3) 149
C9—H9A···O1iv 0.96 2.56 3.491 (3) 163

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x+1, y+1, z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2327).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Beşoluk, S., Küçükislamoğlu, M., Zengin, M., Arslan, M. & Nebioğlu, M. (2010). Turk. J. Chem. 34, 411–416.
  3. Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Jawale, D. V., Pratap, U. R., Mulay, A. A., Mali, J. R. & Mane, R. A. (2011). J. Chem. Sci. 123, 645–655.
  6. Karade, H. N., Sathe, M. & Kaushik, M. P. (2007). Molecules, 12, 1341–1351. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015003576/zs2327sup1.cif

e-71-0o206-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003576/zs2327Isup2.hkl

e-71-0o206-Isup2.hkl (179.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003576/zs2327Isup3.cml

. DOI: 10.1107/S2056989015003576/zs2327fig1.tif

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015003576/zs2327fig2.tif

Cystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (Table 1). For clarity only the H atoms participating in these inter­actions are shown.

. DOI: 10.1107/S2056989015003576/zs2327fig3.tif

A view showing the π–π inter­actions. The H atoms are omitted for the sake of clarity.

CCDC reference: 1050728

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES