Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Apr 12;91(8):3255–3259. doi: 10.1073/pnas.91.8.3255

Evolution of translational elongation factor (EF) sequences: reliability of global phylogenies inferred from EF-1 alpha(Tu) and EF-2(G) proteins.

R Creti 1, E Ceccarelli 1, M Bocchetta 1, A M Sanangelantoni 1, O Tiboni 1, P Palm 1, P Cammarano 1
PMCID: PMC43555  PMID: 8159735

Abstract

The EF-2 coding genes of the Archaea Pyrococcus woesei and Desulfurococcus mobilis were cloned and sequenced. Global phylogenies were inferred by alternative tree-making methods from available EF-2(G) sequence data and contrasted with phylogenies constructed from the more conserved but shorter EF-1 alpha(Tu) sequences. Both the monophyly (sensu Hennig) of Archaea and their subdivision into the kingdoms Crenarchaeota and Euryarchaeota are consistently inferred by analysis of EF-2(G) sequences, usually at a high bootstrap confidence level. In contrast, EF-1 alpha(Tu) phylogenies tend to be inconsistent with one another and show low bootstrap confidence levels. While evolutionary distance and DNA maximum parsimony analyses of EF-1 alpha(Tu) sequences do show archaeal monophyly, protein parsimony and DNA maximum-likelihood analyses of these data do not. In no case, however, do any of the tree topologies inferred from EF-1 alpha(Tu) sequence analyses receive significant bootstrap support.

Full text

PDF
3255

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K., Clark B. F., Duffy L., Jones M. D., Kaziro Y., Laursen R. A., L'Italien J., Miller D. L., Nagarkatti S., Nakamura S. Primary structure of elongation factor Tu from Escherichia coli. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1326–1330. doi: 10.1073/pnas.77.3.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auer J., Spicker G., Böck A. Nucleotide sequence of the gene for elongation factor EF-1 alpha from the extreme thermophilic archaebacterium Thermococcus celer. Nucleic Acids Res. 1990 Jul 11;18(13):3989–3989. doi: 10.1093/nar/18.13.3989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachleitner M., Ludwig W., Stetter K. O., Schleifer K. H. Nucleotide sequence of the gene coding for the elongation factor Tu from the extremely thermophilic eubacterium Thermotoga maritima. FEMS Microbiol Lett. 1989 Jan 1;48(1):115–120. doi: 10.1016/0378-1097(89)90157-2. [DOI] [PubMed] [Google Scholar]
  4. Baldacci G., Guinet F., Tillit J., Zaccai G., de Recondo A. M. Functional implications related to the gene structure of the elongation factor EF-Tu from Halobacterium marismortui. Nucleic Acids Res. 1990 Feb 11;18(3):507–511. doi: 10.1093/nar/18.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buttarelli F. R., Calogero R. A., Tiboni O., Gualerzi C. O., Pon C. L. Characterization of the str operon genes from Spirulina platensis and their evolutionary relationship to those of other prokaryotes. Mol Gen Genet. 1989 May;217(1):97–104. doi: 10.1007/BF00330947. [DOI] [PubMed] [Google Scholar]
  6. Cammarano P., Palm P., Creti R., Ceccarelli E., Sanangelantoni A. M., Tiboni O. Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. J Mol Evol. 1992 May;34(5):396–405. doi: 10.1007/BF00162996. [DOI] [PubMed] [Google Scholar]
  7. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cousineau B., Cerpa C., Lefebvre J., Cedergren R. The sequence of the gene encoding elongation factor Tu from Chlamydia trachomatis compared with those of other organisms. Gene. 1992 Oct 12;120(1):33–41. doi: 10.1016/0378-1119(92)90006-b. [DOI] [PubMed] [Google Scholar]
  9. Creti R., Citarella F., Tiboni O., Sanangelantoni A., Palm P., Cammarano P. Nucleotide sequence of a DNA region comprising the gene for elongation factor 1 alpha (EF-1 alpha) from the ultrathermophilic archaeote Pyrococcus woesei: phylogenetic implications. J Mol Evol. 1991 Oct;33(4):332–342. doi: 10.1007/BF02102864. [DOI] [PubMed] [Google Scholar]
  10. Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6661–6665. doi: 10.1073/pnas.86.17.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gojobori T., Moriyama E. N., Kimura M. Statistical methods for estimating sequence divergence. Methods Enzymol. 1990;183:531–550. doi: 10.1016/0076-6879(90)83035-8. [DOI] [PubMed] [Google Scholar]
  12. Gouy M., Li W. H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature. 1989 May 11;339(6220):145–147. doi: 10.1038/339145a0. [DOI] [PubMed] [Google Scholar]
  13. Grinblat Y., Brown N. H., Kafatos F. C. Isolation and characterization of the Drosophila translational elongation factor 2 gene. Nucleic Acids Res. 1989 Sep 25;17(18):7303–7314. doi: 10.1093/nar/17.18.7303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hovemann B., Richter S., Walldorf U., Cziepluch C. Two genes encode related cytoplasmic elongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res. 1988 Apr 25;16(8):3175–3194. doi: 10.1093/nar/16.8.3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Itoh T. Sequence analysis of the peptide-elongation factor EF-2 gene, downstream from those of ribosomal proteins H-S12 and H-S7, from the archaebacterial extreme halophile, Halobacterium halobium. Eur J Biochem. 1989 Dec 8;186(1-2):213–219. doi: 10.1111/j.1432-1033.1989.tb15197.x. [DOI] [PubMed] [Google Scholar]
  16. Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9355–9359. doi: 10.1073/pnas.86.23.9355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jin L., Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol. 1990 Jan;7(1):82–102. doi: 10.1093/oxfordjournals.molbev.a040588. [DOI] [PubMed] [Google Scholar]
  18. Kohno K., Uchida T., Ohkubo H., Nakanishi S., Nakanishi T., Fukui T., Ohtsuka E., Ikehara M., Okada Y. Amino acid sequence of mammalian elongation factor 2 deduced from the cDNA sequence: homology with GTP-binding proteins. Proc Natl Acad Sci U S A. 1986 Jul;83(14):4978–4982. doi: 10.1073/pnas.83.14.4978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kushiro M., Shimizu M., Tomita K. Molecular cloning and sequence determination of the tuf gene coding for the elongation factor Tu of Thermus thermophilus HB8. Eur J Biochem. 1987 Dec 30;170(1-2):93–98. doi: 10.1111/j.1432-1033.1987.tb13671.x. [DOI] [PubMed] [Google Scholar]
  20. Lake J. A. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 1987 Mar;4(2):167–191. doi: 10.1093/oxfordjournals.molbev.a040433. [DOI] [PubMed] [Google Scholar]
  21. Lake J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature. 1988 Jan 14;331(6152):184–186. doi: 10.1038/331184a0. [DOI] [PubMed] [Google Scholar]
  22. Lechner K., Heller G., Böck A. Gene for the diphtheria toxin-susceptible elongation factor 2 from Methanococcus vannielii. Nucleic Acids Res. 1988 Aug 25;16(16):7817–7826. doi: 10.1093/nar/16.16.7817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leffers H., Kjems J., Ostergaard L., Larsen N., Garrett R. A. Evolutionary relationships amongst archaebacteria. A comparative study of 23 S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen. J Mol Biol. 1987 May 5;195(1):43–61. doi: 10.1016/0022-2836(87)90326-3. [DOI] [PubMed] [Google Scholar]
  24. Lenstra J. A., Van Vliet A., Arnberg A. C., Van Hemert F. J., Möller W. Genes coding for the elongation factor EF-1 alpha in Artemia. Eur J Biochem. 1986 Mar 17;155(3):475–483. doi: 10.1111/j.1432-1033.1986.tb09514.x. [DOI] [PubMed] [Google Scholar]
  25. Montandon P. E., Stutz E. Nucleotide sequence of a Euglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA. Nucleic Acids Res. 1983 Sep 10;11(17):5877–5892. doi: 10.1093/nar/11.17.5877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Montandon P. E., Stutz E. Structure and expression of the Euglena gracilis nuclear gene coding for the translation elongation factor EF-1 alpha. Nucleic Acids Res. 1990 Jan 11;18(1):75–82. doi: 10.1093/nar/18.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagata S., Nagashima K., Tsunetsugu-Yokota Y., Fujimura K., Miyazaki M., Kaziro Y. Polypeptide chain elongation factor 1 alpha (EF-1 alpha) from yeast: nucleotide sequence of one of the two genes for EF-1 alpha from Saccharomyces cerevisiae. EMBO J. 1984 Aug;3(8):1825–1830. doi: 10.1002/j.1460-2075.1984.tb02053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nagata S., Tsunetsugu-Yokota Y., Naito A., Kaziro Y. Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6192–6196. doi: 10.1073/pnas.80.20.6192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohama T., Yamao F., Muto A., Osawa S. Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content. J Bacteriol. 1987 Oct;169(10):4770–4777. doi: 10.1128/jb.169.10.4770-4777.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pechmann H., Tesch A., Klink F. Cloning and sequencing of the fus-gene encoding elongation factor 2 in the archaebacterium Thermoplasma acidophilum. FEMS Microbiol Lett. 1991 Mar 15;63(1):51–56. doi: 10.1016/0378-1097(91)90526-g. [DOI] [PubMed] [Google Scholar]
  31. Pühler G., Leffers H., Gropp F., Palm P., Klenk H. P., Lottspeich F., Garrett R. A., Zillig W. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4569–4573. doi: 10.1073/pnas.86.12.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rivera M. C., Lake J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science. 1992 Jul 3;257(5066):74–76. doi: 10.1126/science.1621096. [DOI] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schröder J., Klink F. Gene for the ADP-ribosylatable elongation factor 2 from the extreme thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Cloning, sequencing, comparative analysis. Eur J Biochem. 1991 Jan 30;195(2):321–327. doi: 10.1111/j.1432-1033.1991.tb15709.x. [DOI] [PubMed] [Google Scholar]
  35. Tesch A., Klink F. Cloning and sequencing of the gene coding for the elongation factor 1 alpha from the archaebacterium Thermoplasma acidophilum. FEMS Microbiol Lett. 1990 Sep 15;59(3):293–297. doi: 10.1016/0378-1097(90)90236-j. [DOI] [PubMed] [Google Scholar]
  36. Tiboni O., Cantoni R., Creti R., Cammarano P., Sanangelantoni A. M. Phylogenetic depth of Thermotoga maritima inferred from analysis of the fus gene: amino acid sequence of elongation factor G and organization of the Thermotoga str operon. J Mol Evol. 1991 Aug;33(2):142–151. doi: 10.1007/BF02193628. [DOI] [PubMed] [Google Scholar]
  37. Toda K., Tasaka M., Mashima K., Kohno K., Uchida T., Takeuchi I. Structure and expression of elongation factor 2 gene during development of Dictyostelium discoideum. J Biol Chem. 1989 Sep 15;264(26):15489–15493. [PubMed] [Google Scholar]
  38. Uetsuki T., Naito A., Nagata S., Kaziro Y. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem. 1989 Apr 5;264(10):5791–5798. [PubMed] [Google Scholar]
  39. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yakhnin A. V., Vorozheykina D. P., Matvienko N. I. Nucleotide sequence of the Thermus thermophilus HB8 gene coding for elongation factor G. Nucleic Acids Res. 1989 Nov 11;17(21):8863–8863. doi: 10.1093/nar/17.21.8863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yang F., Demma M., Warren V., Dharmawardhane S., Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990 Oct 4;347(6292):494–496. doi: 10.1038/347494a0. [DOI] [PubMed] [Google Scholar]
  43. Zengel J. M., Archer R. H., Lindahl L. The nucleotide sequence of the Escherichia coli fus gene, coding for elongation factor G. Nucleic Acids Res. 1984 Feb 24;12(4):2181–2192. doi: 10.1093/nar/12.4.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zuckerkandl E. On the molecular evolutionary clock. J Mol Evol. 1987;26(1-2):34–46. doi: 10.1007/BF02111280. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES