Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Apr 12;91(8):3324–3328. doi: 10.1073/pnas.91.8.3324

Pseudouridine formation in U2 small nuclear RNA.

J R Patton 1, M R Jacobson 1, T Pederson 1
PMCID: PMC43569  PMID: 8159747

Abstract

U2 small nuclear RNA contains 13 pseudouridine (psi) nucleotides, of which 11 are clustered in 5' regions involved in base-pairing interactions with other RNAs in the spliceosome. As a first step toward understanding the psi formation pathway in U2 RNA, we investigated psi formation on unmodified human U2 RNA in a HeLa cell extract system. Psi formation was found to occur specifically within only those RNase T1 oligonucleotide fragments of U2 RNA known to contain psi in vivo. Using 5-fluorouridine (FUrd)-containing U2 RNAs as specific inhibitors of psi formation in non-FUrd-substituted substrate U2 RNA, we found that wild-type FUrd-containing U2 RNA as well as several FUrd-containing mutant U2 RNAs completely inhibited psi formation. In contrast, certain other mutant U2 RNAs containing FUrd displayed reduced inhibitory capacity. In these cases psi modifications occurred in specific RNase T1 fragments of the substrate U2 RNA only if the FUrd-containing competitor RNA was mutated at or near this site. Formation of psi at one site in U2 RNA appeared to be neither dependent on prior psi formation at another site or sites nor required for subsequent psi formation elsewhere in the molecule. This autonomous mode of psi formation may be driven by multiple psi synthase enzymes acting independently at different sites in U2 RNA.

Full text

PDF
3324

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Björk G. R., Ericson J. U., Gustafsson C. E., Hagervall T. G., Jönsson Y. H., Wikström P. M. Transfer RNA modification. Annu Rev Biochem. 1987;56:263–287. doi: 10.1146/annurev.bi.56.070187.001403. [DOI] [PubMed] [Google Scholar]
  2. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Griffey R. H., Davis D., Yamaizumi Z., Nishimura S., Bax A., Hawkins B., Poulter C. D. 15N-labeled Escherichia coli tRNAfMet, tRNAGlu, tRNATyr, and tRNAPhe. Double resonance and two-dimensional NMR of N1-labeled pseudouridine. J Biol Chem. 1985 Aug 15;260(17):9734–9741. [PubMed] [Google Scholar]
  4. Jacobson M. R., Rhoadhouse M., Pederson T. U2 small nuclear RNA 3' end formation is directed by a critical internal structure distinct from the processing site. Mol Cell Biol. 1993 Feb;13(2):1119–1129. doi: 10.1128/mcb.13.2.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kammen H. O., Marvel C. C., Hardy L., Penhoet E. E. Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. J Biol Chem. 1988 Feb 15;263(5):2255–2263. [PubMed] [Google Scholar]
  6. Kleinschmidt A. M., Patton J. R., Pederson T. U2 small nuclear RNP assembly in vitro. Nucleic Acids Res. 1989 Jun 26;17(12):4817–4828. doi: 10.1093/nar/17.12.4817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lührmann R., Kastner B., Bach M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta. 1990 Nov 30;1087(3):265–292. doi: 10.1016/0167-4781(90)90001-i. [DOI] [PubMed] [Google Scholar]
  8. Maden B. E. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1990;39:241–303. doi: 10.1016/s0079-6603(08)60629-7. [DOI] [PubMed] [Google Scholar]
  9. Madore S. J., Wieben E. D., Kunkel G. R., Pederson T. Precursors of U4 small nuclear RNA. J Cell Biol. 1984 Sep;99(3):1140–1144. doi: 10.1083/jcb.99.3.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Madore S. J., Wieben E. D., Pederson T. Intracellular site of U1 small nuclear RNA processing and ribonucleoprotein assembly. J Cell Biol. 1984 Jan;98(1):188–192. doi: 10.1083/jcb.98.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mattaj I. W., De Robertis E. M. Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins. Cell. 1985 Jan;40(1):111–118. doi: 10.1016/0092-8674(85)90314-9. [DOI] [PubMed] [Google Scholar]
  12. Mullenbach G. T., Kammen H. O., Penhoet E. E. A heterologous system for detecting eukaryotic enzymes which synthesize pseudouridine in transfer ribonucleic acids. J Biol Chem. 1976 Aug 10;251(15):4570–4578. [PubMed] [Google Scholar]
  13. Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
  14. POCHON F., MICHELSON A. M., GRUNBERG-MANAGO M., COHN W. E., DONDON L. POLYNUCLEOTIDE ANALOGUES. III. POLYPSEUDOURIDYLIC ACID: SYNTHESIS AND SOME PHYSICOCHEMICAL AND BIOCHEMICAL PROPERTIES. Biochim Biophys Acta. 1964 Mar 23;80:441–447. doi: 10.1016/0926-6550(64)90146-x. [DOI] [PubMed] [Google Scholar]
  15. Patton J. R., Habets W., van Venrooij W. J., Pederson T. U1 small nuclear ribonucleoprotein particle-specific proteins interact with the first and second stem-loops of U1 RNA, with the A protein binding directly to the RNA independently of the 70K and Sm proteins. Mol Cell Biol. 1989 Aug;9(8):3360–3368. doi: 10.1128/mcb.9.8.3360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patton J. R. Multiple pseudouridine synthase activities for small nuclear RNAs. Biochem J. 1993 Mar 1;290(Pt 2):595–600. doi: 10.1042/bj2900595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patton J. R., Patterson R. J., Pederson T. Reconstitution of the U1 small nuclear ribonucleoprotein particle. Mol Cell Biol. 1987 Nov;7(11):4030–4037. doi: 10.1128/mcb.7.11.4030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Patton J. R., Pederson T. The Mr 70,000 protein of the U1 small nuclear ribonucleoprotein particle binds to the 5' stem-loop of U1 RNA and interacts with Sm domain proteins. Proc Natl Acad Sci U S A. 1988 Feb;85(3):747–751. doi: 10.1073/pnas.85.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Patton J. R. Pseudouridine modification of U5 RNA in ribonucleoprotein particles assembled in vitro. Mol Cell Biol. 1991 Dec;11(12):5998–6006. doi: 10.1128/mcb.11.12.5998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Patton J. R. Ribonucleoprotein particle assembly and modification of U2 small nuclear RNA containing 5-fluorouridine. Biochemistry. 1993 Aug 31;32(34):8939–8944. doi: 10.1021/bi00085a027. [DOI] [PubMed] [Google Scholar]
  21. Samuelsson T. Interactions of transfer RNA pseudouridine synthases with RNAs substituted with fluorouracil. Nucleic Acids Res. 1991 Nov 25;19(22):6139–6144. doi: 10.1093/nar/19.22.6139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sierakowska H., Shukla R. R., Dominski Z., Kole R. Inhibition of pre-mRNA splicing by 5-fluoro-, 5-chloro-, and 5-bromouridine. J Biol Chem. 1989 Nov 15;264(32):19185–19191. [PubMed] [Google Scholar]
  23. Wieben E. D., Nenninger J. M., Pederson T. Ribonucleoprotein organization of eukaryotic RNA. XXXII. U2 small nuclear RNA precursors and their accurate 3' processing in vitro as ribonucleoprotein particles. J Mol Biol. 1985 May 5;183(1):69–78. doi: 10.1016/0022-2836(85)90281-5. [DOI] [PubMed] [Google Scholar]
  24. Will C. L., Dolnick B. J. 5-Fluorouracil augmentation of dihydrofolate reductase RNA containing contiguous exon and intron sequences in KB7B cells. J Biol Chem. 1987 Apr 25;262(12):5433–5436. [PubMed] [Google Scholar]
  25. Will C. L., Dolnick B. J. 5-Fluorouracil inhibits dihydrofolate reductase precursor mRNA processing and/or nuclear mRNA stability in methotrexate-resistant KB cells. J Biol Chem. 1989 Dec 15;264(35):21413–21421. [PubMed] [Google Scholar]
  26. Zieve G. W., Sauterer R. A. Cell biology of the snRNP particles. Crit Rev Biochem Mol Biol. 1990;25(1):1–46. doi: 10.3109/10409239009090604. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES