Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Apr 26;91(9):3647–3651. doi: 10.1073/pnas.91.9.3647

Id-1 as a possible transcriptional mediator of muscle disuse atrophy.

K Gundersen 1, J P Merlie 1
PMCID: PMC43638  PMID: 8170962

Abstract

Disuse of muscle leads to atrophy of the fibers. This atrophy is correlated with reduced transcription. We found that when muscle was denervated or paralyzed with a nerve impulse block, the mRNA for Id-1, a negative regulator of transcription, was increased 2- to 7-fold. To test the effect of high Id-1 levels in active muscles, we made transgenic mice in which Id-1 was overexpressed under control of regulatory elements which confer tissue- and fiber-type-specific expression in differentiated muscle cells. Fiber types with high transgene expression were atrophic compared to those in wild-type litter mates. In contrast, fiber types with low transgene expression displayed hypertrophy, presumably caused by an overload due to reduced strength in atrophic synergistic fibers. Apart from the selective effects on fiber caliber, the muscle tissue showed no signs of pathology, and apart from a characteristic slightly lower body weight, the transgenic animals looked and behaved normally. We suggest that in the mature muscle, Id-1 may be involved in regulating muscle fiber size at the transcriptional level during disuse.

Full text

PDF
3647

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Shakra S. R., Cole A. J., Drachman D. B. Nerve stimulation and denervation induce differential patterns of immediate early gene mRNA expression in skeletal muscle. Brain Res Mol Brain Res. 1993 May;18(3):216–220. doi: 10.1016/0169-328x(93)90192-r. [DOI] [PubMed] [Google Scholar]
  2. Atomi Y., Yamada S., Nishida T. Early changes of alpha B-crystallin mRNA in rat skeletal muscle to mechanical tension and denervation. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1323–1330. doi: 10.1016/0006-291x(91)92083-v. [DOI] [PubMed] [Google Scholar]
  3. Babij P., Booth F. W. Alpha-actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle. Am J Physiol. 1988 May;254(5 Pt 1):C651–C656. doi: 10.1152/ajpcell.1988.254.5.C651. [DOI] [PubMed] [Google Scholar]
  4. Ball A. R., Jr, Bos T. J., Löliger C., Nagata L. P., Nishimura T., Su H., Tsuchie H., Vogt P. K. Jun: oncogene and transcriptional regulator. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 2):687–693. doi: 10.1101/sqb.1988.053.01.078. [DOI] [PubMed] [Google Scholar]
  5. Benezra R., Davis R. L., Lockshon D., Turner D. L., Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. doi: 10.1016/0092-8674(90)90214-y. [DOI] [PubMed] [Google Scholar]
  6. Bessereau J. L., Fontaine B., Changeux J. P. Denervation of mouse skeletal muscle differentially affects the expression of the jun and fos proto-oncogenes. New Biol. 1990 Apr;2(4):375–383. [PubMed] [Google Scholar]
  7. Braun T., Rudnicki M. A., Arnold H. H., Jaenisch R. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell. 1992 Oct 30;71(3):369–382. doi: 10.1016/0092-8674(92)90507-9. [DOI] [PubMed] [Google Scholar]
  8. Buonanno A., Apone L., Morasso M. I., Beers R., Brenner H. R., Eftimie R. The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA. Nucleic Acids Res. 1992 Feb 11;20(3):539–544. doi: 10.1093/nar/20.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Christy B. A., Sanders L. K., Lau L. F., Copeland N. G., Jenkins N. A., Nathans D. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1815–1819. doi: 10.1073/pnas.88.5.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Donoghue M. J., Alvarez J. D., Merlie J. P., Sanes J. R. Fiber type- and position-dependent expression of a myosin light chain-CAT transgene detected with a novel histochemical stain for CAT. J Cell Biol. 1991 Oct;115(2):423–434. doi: 10.1083/jcb.115.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donoghue M., Ernst H., Wentworth B., Nadal-Ginard B., Rosenthal N. A muscle-specific enhancer is located at the 3' end of the myosin light-chain 1/3 gene locus. Genes Dev. 1988 Dec;2(12B):1779–1790. doi: 10.1101/gad.2.12b.1779. [DOI] [PubMed] [Google Scholar]
  13. Duclert A., Piette J., Changeux J. P. Influence of innervation of myogenic factors and acetylcholine receptor alpha-subunit mRNAs. Neuroreport. 1991 Jan;2(1):25–28. doi: 10.1097/00001756-199101000-00006. [DOI] [PubMed] [Google Scholar]
  14. Eftimie R., Brenner H. R., Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1349–1353. doi: 10.1073/pnas.88.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fontaine B., Sassoon D., Buckingham M., Changeux J. P. Detection of the nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J. 1988 Mar;7(3):603–609. doi: 10.1002/j.1460-2075.1988.tb02853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem. 1990 Feb;38(2):257–265. doi: 10.1177/38.2.2137154. [DOI] [PubMed] [Google Scholar]
  17. Gundersen K. Early effects of denervation on isometric and isotonic contractile properties of rat skeletal muscles. Acta Physiol Scand. 1985 Aug;124(4):549–555. doi: 10.1111/j.1748-1716.1985.tb00047.x. [DOI] [PubMed] [Google Scholar]
  18. Gundersen K., Hanley T. A., Merlie J. P. Transgenic embryo yield is increased by a simple, inexpensive micropipet treatment. Biotechniques. 1993 Mar;14(3):412–414. [PubMed] [Google Scholar]
  19. Gundersen K., Sanes J. R., Merlie J. P. Neural regulation of muscle acetylcholine receptor epsilon- and alpha-subunit gene promoters in transgenic mice. J Cell Biol. 1993 Dec;123(6 Pt 1):1535–1544. doi: 10.1083/jcb.123.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gundersen K. Spontaneous activity at long-term silenced synapses in rat muscle. J Physiol. 1990 Nov;430:399–418. doi: 10.1113/jphysiol.1990.sp018298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hall Z. W., Sanes J. R. Synaptic structure and development: the neuromuscular junction. Cell. 1993 Jan;72 (Suppl):99–121. doi: 10.1016/s0092-8674(05)80031-5. [DOI] [PubMed] [Google Scholar]
  22. Hanley T., Merlie J. P. Transgene detection in unpurified mouse tail DNA by polymerase chain reaction. Biotechniques. 1991 Jan;10(1):56–56. [PubMed] [Google Scholar]
  23. Hasty P., Bradley A., Morris J. H., Edmondson D. G., Venuti J. M., Olson E. N., Klein W. H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 1993 Aug 5;364(6437):501–506. doi: 10.1038/364501a0. [DOI] [PubMed] [Google Scholar]
  24. Havenith M. G., Visser R., Schrijvers-van Schendel J. M., Bosman F. T. Muscle fiber typing in routinely processed skeletal muscle with monoclonal antibodies. Histochemistry. 1990;93(5):497–499. doi: 10.1007/BF00266407. [DOI] [PubMed] [Google Scholar]
  25. Hennig R., Lømo T. Effects of chronic stimulation on the size and speed of long-term denervated and innervated rat fast and slow skeletal muscles. Acta Physiol Scand. 1987 May;130(1):115–131. doi: 10.1111/j.1748-1716.1987.tb08118.x. [DOI] [PubMed] [Google Scholar]
  26. Huang M. T., Gorman C. M. The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol Cell Biol. 1990 Apr;10(4):1805–1810. doi: 10.1128/mcb.10.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jen Y., Weintraub H., Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 1992 Aug;6(8):1466–1479. doi: 10.1101/gad.6.8.1466. [DOI] [PubMed] [Google Scholar]
  28. Lassar A. B., Thayer M. J., Overell R. W., Weintraub H. Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1. Cell. 1989 Aug 25;58(4):659–667. doi: 10.1016/0092-8674(89)90101-3. [DOI] [PubMed] [Google Scholar]
  29. Leyland D. M., Turner P. C., Beynon R. J. Effect of denervation on the expression of glycogen phosphorylase in mouse skeletal muscle. Biochem J. 1990 Nov 15;272(1):231–237. doi: 10.1042/bj2720231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Loughna P., Goldspink G., Goldspink D. F. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles. J Appl Physiol (1985) 1986 Jul;61(1):173–179. doi: 10.1152/jappl.1986.61.1.173. [DOI] [PubMed] [Google Scholar]
  31. Matsuda R., Spector D., Strohman R. C. Denervated skeletal muscle displays discoordinate regulation for the synthesis of several myofibrillar proteins. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1122–1125. doi: 10.1073/pnas.81.4.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Merlie J. P., Isenberg K. E., Russell S. D., Sanes J. R. Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J Cell Biol. 1984 Jul;99(1 Pt 1):332–335. doi: 10.1083/jcb.99.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Metafora S., Felsani A., Cotrufo R., Tajana G. F., Del Rio A., De Prisco P. P., Rutigliano B., Esposito V. Neural control of gene expression in the skeletal muscle fibre: changes in the muscular mRNA population following denervation. Proc R Soc Lond B Biol Sci. 1980 Aug 13;209(1175):257–273. doi: 10.1098/rspb.1980.0094. [DOI] [PubMed] [Google Scholar]
  35. Musacchia X. J., Steffen J. M., Fell R. D. Disuse atrophy of skeletal muscle: animal models. Exerc Sport Sci Rev. 1988;16:61–87. [PubMed] [Google Scholar]
  36. Nabeshima Y., Hanaoka K., Hayasaka M., Esumi E., Li S., Nonaka I., Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993 Aug 5;364(6437):532–535. doi: 10.1038/364532a0. [DOI] [PubMed] [Google Scholar]
  37. Niederle B., Mayr R. Course of denervation atrophy in type I and type II fibres of rat extensor digitorum longus muscle. Anat Embryol (Berl) 1978 May 31;153(1):9–21. doi: 10.1007/BF00569846. [DOI] [PubMed] [Google Scholar]
  38. Olson E. N. MyoD family: a paradigm for development? Genes Dev. 1990 Sep;4(9):1454–1461. doi: 10.1101/gad.4.9.1454. [DOI] [PubMed] [Google Scholar]
  39. Rosenthal N., Kornhauser J. M., Donoghue M., Rosen K. M., Merlie J. P. Myosin light chain enhancer activates muscle-specific, developmentally regulated gene expression in transgenic mice. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7780–7784. doi: 10.1073/pnas.86.20.7780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rudnicki M. A., Braun T., Hinuma S., Jaenisch R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell. 1992 Oct 30;71(3):383–390. doi: 10.1016/0092-8674(92)90508-a. [DOI] [PubMed] [Google Scholar]
  41. Schiaffino S., Gorza L., Pitton G., Saggin L., Ausoni S., Sartore S., Lømo T. Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Dev Biol. 1988 May;127(1):1–11. doi: 10.1016/0012-1606(88)90183-2. [DOI] [PubMed] [Google Scholar]
  42. Schiaffino S., Gorza L., Sartore S., Saggin L., Ausoni S., Vianello M., Gundersen K., Lømo T. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989 Jun;10(3):197–205. doi: 10.1007/BF01739810. [DOI] [PubMed] [Google Scholar]
  43. Spector S. A. Trophic effects on the contractile and histochemical properties of rat soleus muscle. J Neurosci. 1985 Aug;5(8):2189–2196. doi: 10.1523/JNEUROSCI.05-08-02189.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sun X. H., Baltimore D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell. 1991 Jan 25;64(2):459–470. doi: 10.1016/0092-8674(91)90653-g. [DOI] [PubMed] [Google Scholar]
  45. Sun X. H., Copeland N. G., Jenkins N. A., Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991 Nov;11(11):5603–5611. doi: 10.1128/mcb.11.11.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thomason D. B., Booth F. W. Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol (1985) 1990 Jan;68(1):1–12. doi: 10.1152/jappl.1990.68.1.1. [DOI] [PubMed] [Google Scholar]
  47. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  48. Witzemann V., Sakmann B. Differential regulation of MyoD and myogenin mRNA levels by nerve induced muscle activity. FEBS Lett. 1991 May 6;282(2):259–264. doi: 10.1016/0014-5793(91)80490-t. [DOI] [PubMed] [Google Scholar]
  49. Yang J. S., Sladky J. T., Kallen R. G., Barchi R. L. TTX-sensitive and TTX-insensitive sodium channel mRNA transcripts are independently regulated in adult skeletal muscle after denervation. Neuron. 1991 Sep;7(3):421–427. doi: 10.1016/0896-6273(91)90294-a. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES