Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1975 Jul;56(1):56–64. doi: 10.1172/JCI108079

Wall stress and patterns of hypertrophy in the human left ventricle.

W Grossman, D Jones, L P McLaurin
PMCID: PMC436555  PMID: 124746

Abstract

It is generally recognized that chronic left ventricular (LV) pressure overload results primarily in wall thickening and concentric hypertrophy, while chronic LV volume overload is characterized by chamber enlargement and an eccentric pattern of hypertrophy. To assess the potential role of the hemodynamic factors which might account for these different patterns of hypertrophy, we measured LV wall stresses throughout the cardiac cycle in 30 patients studied at the time of cardiac catheterization. The study group consisted of 6 subjects with LV pressure overload, 18 with LV volume overload, and 6 with no evidence of heart disease (control). LV pressure, meridional wall stress (sigman), wall thickness (h), and radius (R) were measured in each patient throughout the cardiac cycle. For patients with pressure overload, LV peak systolic and end diastolic pressures were significantly increased (220 plus or minus 6/23 plus or minus 3 mm Hg) compared to control (117 plus or minus 7/10 plus or minus 1 mm Hg, P less than 0.01 for each). However, peak systolic and end diastolic (sigman) were normal (161 plus or minus 24/23 plus or minus 3 times 10-3 dyn/cm-2) compared to control (151 plus or minus 14/17 plus or minus 2 times 10-3 dyn/cm-2, NS), reflecting the fact that the pressure overload was exactly counterbalanced by increased wall thickness (1.5 plus or minus 0.1 cm for pressure overload vs. 0.8 plus or minus 0.1 cm for control, P less than 0.01). For patients with volume overload, peak systolic (sigman) was not significantly different from control, but end diastolic (sigmam) was consistently higher than normal (41 plus or minus 3 times 10-3 dyn/cm-2 for volume overload, 17 plus or minus 2 times 10-3 dyn/cm-2 for control, P less than 0.01). LV pressure overload was associated with concentric hypertrophy, and an increased value for the ratio of wall thickness to radius (h/R ratio). In contrast, LV volume overload was associated with eccentric hypertrophy, and a normal h/R ratio. These data suggest the hypothesis that hypertrophy develops to normalize systolic but not diastolic wall stress. We propose that increased systolic tension development by myocardial fibers results in fiber thickening just sufficient to return the systolic stress (force per unit cross-sectional area) to normal. In contrast, increased resting or diastolic tension appears to result in gradual fiber elongation or lengthening which improves efficiency of the ventricular chamber but cannot normalize the diastolic wall stress.

Full text

PDF
56

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BADEER H. S. BIOLOGICAL SIGNIFICANCE OF CARDIAC HYPERTROPHY. Am J Cardiol. 1964 Aug;14:133–138. doi: 10.1016/0002-9149(64)90123-7. [DOI] [PubMed] [Google Scholar]
  2. Bishop V. S., Horwitz L. D. Left ventricular transverse internal diameter: value in studying left ventricular function. Am Heart J. 1970 Oct;80(4):507–514. doi: 10.1016/0002-8703(70)90199-7. [DOI] [PubMed] [Google Scholar]
  3. Falsetti H. L., Mates R. E., Grant C., Greene D. G., Bunnell I. L. Left ventricular wall stress calculated from one-plane cineangiography. Circ Res. 1970 Jan;26(1):71–83. doi: 10.1161/01.res.26.1.71. [DOI] [PubMed] [Google Scholar]
  4. Fanburg B. L. Experimental cardiac hypertrophy. N Engl J Med. 1970 Mar 26;282(13):723–732. doi: 10.1056/NEJM197003262821306. [DOI] [PubMed] [Google Scholar]
  5. Feigenbaum H., Popp R. L., Wolfe S. B., Troy B. L., Pombo J. F., Haine C. L., Dodge H. T. Ultrasound measurements of the left ventricle. A correlative study with angiocardiography. Arch Intern Med. 1972 Mar;129(3):461–467. [PubMed] [Google Scholar]
  6. Fortun N. J., Hood W. P., Jr, Sherman M. E., Craige E. Determination of left ventricular volumes by ultrasound. Circulation. 1971 Oct;44(4):575–584. doi: 10.1161/01.cir.44.4.575. [DOI] [PubMed] [Google Scholar]
  7. Grant C., Greene D. G., Bunnell I. L. Left ventricular enlargement and hypertrophy. A clinical and angiocardiographic study. Am J Med. 1965 Dec;39(6):895–904. doi: 10.1016/0002-9343(65)90111-7. [DOI] [PubMed] [Google Scholar]
  8. Grossman W., McLaurin L. P., Moos S. P., Stefadouros M., Young D. T. Wall thickness and diastolic properties of the left ventricle. Circulation. 1974 Jan;49(1):129–135. doi: 10.1161/01.cir.49.1.129. [DOI] [PubMed] [Google Scholar]
  9. Grossman W., McLaurin L. P., Stefadouros M. A. Left ventricular stiffness associated with chronic pressure and volume overloads in man. Circ Res. 1974 Nov;35(5):793–800. doi: 10.1161/01.res.35.5.793. [DOI] [PubMed] [Google Scholar]
  10. Grossman W., Stefadouros M. A., McLaurin L. P., Rolett E. L., Young D. T. Quantitative assessment of left ventricular diastolic stiffness in man. Circulation. 1973 Mar;47(3):567–574. doi: 10.1161/01.cir.47.3.567. [DOI] [PubMed] [Google Scholar]
  11. Henry W. L., Clark C. E., Epstein S. E. Asymmetric septal hypertrophy (ASH): the unifying link in the IHSS disease spectrum. Observations regarding its pathogenesis, pathophysiology, and course. Circulation. 1973 Apr;47(4):827–832. doi: 10.1161/01.cir.47.4.827. [DOI] [PubMed] [Google Scholar]
  12. Hjalmarson A., Isaksson O. In vitro work load and rat heart metabolism. I. Effect on protein synthesis. Acta Physiol Scand. 1972 Sep;86(1):126–144. doi: 10.1111/j.1748-1716.1972.tb00231.x. [DOI] [PubMed] [Google Scholar]
  13. Hood W. P., Jr, Rackley C. E., Rolett E. L. Wall stress in the normal and hypertrophied human left ventricle. Am J Cardiol. 1968 Oct;22(4):550–558. doi: 10.1016/0002-9149(68)90161-6. [DOI] [PubMed] [Google Scholar]
  14. LEVINE N. D., ROCKOFF S. D., BRAUNWALD E. AN ANGIOCARDIOGRAPHIC ANALYSIS OF THE THICKNESS OF THE LEFT VENTRICULAR WALL AND CAVITY IN AORTIC STENOSIS AND OTHER VALVULAR LESIONS. HEMODYNAMIC-ANGIOGRAPHIC CORRELATIONS IN PATIENTS WITH OBSTRUCTION TO LEFT VENTRICULAR OUTFLOW. Circulation. 1963 Sep;28:339–345. doi: 10.1161/01.cir.28.3.339. [DOI] [PubMed] [Google Scholar]
  15. LINZBACH A. J. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960 Mar;5:370–382. doi: 10.1016/0002-9149(60)90084-9. [DOI] [PubMed] [Google Scholar]
  16. Legato M. J. Sarcomerogenesis in human myocardium. J Mol Cell Cardiol. 1970 Dec;1(4):425–437. doi: 10.1016/0022-2828(70)90039-8. [DOI] [PubMed] [Google Scholar]
  17. McLaurin L. P., Grossman W., Stefadouros M. A., Rolett E. L., Young D. T. A new technique for the study of left ventricular pressure-volume relations in man. Circulation. 1973 Jul;48(1):56–64. doi: 10.1161/01.cir.48.1.56. [DOI] [PubMed] [Google Scholar]
  18. Meerson F. Z. The myocardium in hyperfunction, hypertrophy and heart failure. Circ Res. 1969 Jul;25(1 Suppl):1–163. [PubMed] [Google Scholar]
  19. Murray J. A., Johnston W., Reid J. M. Echocardiographic determination of left ventricular dimensions, volumes and performance. Am J Cardiol. 1972 Aug;30(3):252–257. doi: 10.1016/0002-9149(72)90068-9. [DOI] [PubMed] [Google Scholar]
  20. Peterson M. B., Lesch M. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Effect of isometric tension development. Circ Res. 1972 Sep;31(3):317–327. doi: 10.1161/01.res.31.3.317. [DOI] [PubMed] [Google Scholar]
  21. Pombo J. F., Troy B. L., Russell R. O., Jr Left ventricular volumes and ejection fraction by echocardiography. Circulation. 1971 Apr;43(4):480–490. doi: 10.1161/01.cir.43.4.480. [DOI] [PubMed] [Google Scholar]
  22. Popp R. L., Harrison D. C. Ultrasonic cardiac echography for determining stroke volume and valvular regurgitation. Circulation. 1970 Mar;41(3):493–502. doi: 10.1161/01.cir.41.3.493. [DOI] [PubMed] [Google Scholar]
  23. Popp R. L., Wolfe S. B., Hirata T., Feigenbaum H. Estimation of right and left ventricular size by ultrasound. A study of the echoes from the interventricular septum. Am J Cardiol. 1969 Oct;24(4):523–530. doi: 10.1016/0002-9149(69)90495-0. [DOI] [PubMed] [Google Scholar]
  24. Ratshin R. A., Rackley C. E., Russell R. O., Jr Determination of left ventricular preload and afterload by quantitative echocardiography in man. Circ Res. 1974 May;34(5):711–718. doi: 10.1161/01.res.34.5.711. [DOI] [PubMed] [Google Scholar]
  25. SANDLER H., DODGE H. T. LEFT VENTRICULAR TENSION AND STRESS IN MAN. Circ Res. 1963 Aug;13:91–104. doi: 10.1161/01.res.13.2.91. [DOI] [PubMed] [Google Scholar]
  26. Spotnitz H. M., Sonnenblick E. H. Structural conditions in the hypertrophied and failing heart. Am J Cardiol. 1973 Sep 20;32(4):398–406. doi: 10.1016/s0002-9149(73)80030-x. [DOI] [PubMed] [Google Scholar]
  27. Troy B. L., Pombo J., Rackley C. E. Measurement of left ventricular wall thickness and mass by echocardiography. Circulation. 1972 Mar;45(3):602–611. doi: 10.1161/01.cir.45.3.602. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES