Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1975 Aug;56(2):292–301. doi: 10.1172/JCI108093

The role of antigen mobility in anti-Rh0(D)-induced agglutination.

E J Victoria, E A Muchmore, E J Sudora, S P Masouredis
PMCID: PMC436587  PMID: 807597

Abstract

Intact human erythrocytes were cross-linked with glutaraldehyde (GA) or dimethyladipimidate (DMA) and tested for their ability to bind [125I]-IgG anti-Rh0(D) and to undergo antibody-mediated hemagglutination. There was no decrease in antibody binding after treatment with GA concentrations up to 1.25% and DMA concentrations up to 1%. Red cells treated with these concentrations of GA and DMA did not agglutinate. The techniques employed to induce agglutination of the cross-linked red cells involved "incomplete" IgG anti-Rho (D) in albumin, "complete" IgM anti-D Rho (D) in saline, and the antiglobulin (Coombs) reaction. The agglutinability of the chemically modified red cells was inversely correlated with the extent of fixation. The dissociation of antibody binding from agglutinability in cross-linked erythrocytes suggests that Rho (D) antigen mobility is required for red cell agglutination. Antigen mobility was manifested by the transition from a relatively monodisperse distribution pattern of Rho (D) antigen sites to one of large aggregates or clusters when agglutination was induced by IgM anti-Rho (D), IgG anti-Rho (D) agglutination of protease modified red cells, and by anti-IgG agglutination of IgG anti-Rho (D)-coated red cells. Antigen clustering was not as prominent in red cells agglutinated by IgG anti-Rho (D) in the presence of albumin. Even though antigen mobility is a prerequisite for antibody-mediated hemagglutination, clustering does not appear to be an absolute requirement. The degree of antigen clustering differs with varying types of agglutination.

Full text

PDF
292

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown P. K. Rhodopsin rotates in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):35–38. doi: 10.1038/newbio236035a0. [DOI] [PubMed] [Google Scholar]
  2. Capaldi R. A. A cross-linking study of the beef erythrocyte membrane: extensive interaction of all the proteins of the membrane except for the glycoproteins. Biochem Biophys Res Commun. 1973 Feb 5;50(3):656–661. doi: 10.1016/0006-291x(73)91294-1. [DOI] [PubMed] [Google Scholar]
  3. Collard J. G., Temmink J. H. Binding and cytochemical detection of cell-bound concanavalin A. Exp Cell Res. 1974 May;86(1):81–86. doi: 10.1016/0014-4827(74)90651-x. [DOI] [PubMed] [Google Scholar]
  4. Comoglio P. M., Filogamo G. Plasma membrane fluidity and surface motility of mouse C-1300 neuroblastoma cells. J Cell Sci. 1973 Sep;13(2):415–420. doi: 10.1242/jcs.13.2.415. [DOI] [PubMed] [Google Scholar]
  5. Comoglio P. M., Guglielmone R. Two dimensional distribution of concanavalin-A receptor molecules on fibroblast and lymphocyte plasma membranes. FEBS Lett. 1972 Nov 1;27(2):256–258. doi: 10.1016/0014-5793(72)80634-3. [DOI] [PubMed] [Google Scholar]
  6. DUPUY M. E., ELLIOT M., MASOUREDIS S. P. RELATIONSHIP BETWEEN RED CELL BOUND ANTIBODY AND AGGLUTINATION IN THE ANTIGLOBULIN REACTION. Vox Sang. 1964 Jan-Feb;9:40–44. doi: 10.1111/j.1423-0410.1964.tb03766.x. [DOI] [PubMed] [Google Scholar]
  7. Davis W. C. H-2 antigen on cell membranes: an explanation for the alteration of distribution by indirect labeling techniques. Science. 1972 Mar 3;175(4025):1006–1008. doi: 10.1126/science.175.4025.1006. [DOI] [PubMed] [Google Scholar]
  8. Economidou J., Hughes-Jones N. C., Gardner B. Quantitative measurements concerning A and B antigen sites. Vox Sang. 1967 May;12(5):321–328. doi: 10.1111/j.1423-0410.1967.tb03362.x. [DOI] [PubMed] [Google Scholar]
  9. Edidin M. Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng. 1974;3(0):179–201. doi: 10.1146/annurev.bb.03.060174.001143. [DOI] [PubMed] [Google Scholar]
  10. GREEN F. A. STUDIES ON THE RH (D) ANTIGEN. Vox Sang. 1965 Jan-Feb;10:32–53. doi: 10.1111/j.1423-0410.1965.tb04317.x. [DOI] [PubMed] [Google Scholar]
  11. Green F. A. Erythrocyte membrane lipids and Rh antigen activity. J Biol Chem. 1972 Feb 10;247(3):881–887. [PubMed] [Google Scholar]
  12. Guérin C., Zachowski A., Prigent B., Paraf A., Dunia I., Diawara M. A., Benedetti E. L. Correlation between the mobility of inner plasma membrane structure and agglutination by concanavalin A in two cell lines of MOPC 173 plasmocytoma cells. Proc Natl Acad Sci U S A. 1974 Jan;71(1):114–117. doi: 10.1073/pnas.71.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HUGHES-JONES N. C., GARDNER B., TELFORD R. THE EFFECT OF FICIN ON THE REACTION BETWEEN ANTI-D AND RED CELLS. Vox Sang. 1964 Mar-Apr;9:175–182. doi: 10.1111/j.1423-0410.1964.tb03677.x. [DOI] [PubMed] [Google Scholar]
  14. HUGHES-JONES N. C., POLLEY M. J., TELFORD R., GARDNER B., KLEINSCHMIDT G. OPTIMAL CONDITIONS FOR DETECTING BLOOD GROUP ANTIBODIES BY THE ANTIGLOBULIN TEST. Vox Sang. 1964 Jul-Aug;9:385–395. doi: 10.1111/j.1423-0410.1964.tb03307.x. [DOI] [PubMed] [Google Scholar]
  15. Herz F., Kaplan E. Effect of glutaraldehyde fixation on erythrocyte agglutinability. Proc Soc Exp Biol Med. 1973 Dec;144(3):1017–1019. doi: 10.3181/00379727-144-37732. [DOI] [PubMed] [Google Scholar]
  16. Howard P. L., Dopp S. L. The composition of several commercial rapid tube and saline anti-D reagents. Transfusion. 1974 May-Jun;14(3):270–271. doi: 10.1111/j.1537-2995.1974.tb04530.x. [DOI] [PubMed] [Google Scholar]
  17. Hoyer L. W., Trabold N. C. The significance of erythrocyte antigen site density. I. Hemagglutination. J Clin Invest. 1970 Jan;49(1):87–95. doi: 10.1172/JCI106226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inbar M., Huet C., Oseroff A. R., Ben-Bassat H., Sachs L. Inhibition of lectin agglutinability by fixation of the cell surface membrane. Biochim Biophys Acta. 1973 Jul 18;311(4):594–599. doi: 10.1016/0005-2736(73)90132-6. [DOI] [PubMed] [Google Scholar]
  19. Ji T. H., Ji I. Crosslinking of glycoproteins in human erythrocyte ghosts. J Mol Biol. 1974 Jun 15;86(1):129–137. doi: 10.1016/s0022-2836(74)80012-4. [DOI] [PubMed] [Google Scholar]
  20. Jost P., Brooks U. J., Griffith O. H. Fluidity of phospholipid bilayers and membranes after exposure to osmium tetroxide and gluteraldehyde. J Mol Biol. 1973 May 15;76(2):313–318. doi: 10.1016/0022-2836(73)90394-x. [DOI] [PubMed] [Google Scholar]
  21. Korn A. H., Feairheller S. H., Filachione E. M. Glutaraldehyde: nature of the reagent. J Mol Biol. 1972 Apr 14;65(3):525–529. doi: 10.1016/0022-2836(72)90206-9. [DOI] [PubMed] [Google Scholar]
  22. Krinsky N. I., Bymun E. N., Packer L. Retention of K+ gradients in imidoester cross-linked erythrocyte membranes. Arch Biochem Biophys. 1974 Jan;160(1):350–352. doi: 10.1016/s0003-9861(74)80044-5. [DOI] [PubMed] [Google Scholar]
  23. MASOUREDIS S. P. Reaction of I-131 anti-Rh-o(D) with enzyme treated red cells. Transfusion. 1962 Nov-Dec;2:363–374. doi: 10.1111/j.1537-2995.1962.tb00259.x. [DOI] [PubMed] [Google Scholar]
  24. Marinetti G. V., Baumgarten R., Sheeley D., Gordesky S. Cross-linking of phospholipids to proteins in the erythrocyte membrane. Biochem Biophys Res Commun. 1973 Jul 2;53(1):302–308. doi: 10.1016/0006-291x(73)91434-4. [DOI] [PubMed] [Google Scholar]
  25. Masouredis S. P., Dupuy M. E., Elliot M. Relationship between Rh-o(D) zygosity and red cell Rh-o(D) antigen content in family members. J Clin Invest. 1967 May;46(5):681–694. doi: 10.1172/JCI105569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McIntyre J. A., Karnovsky M. J., Gilula N. B. Intramembranous particle aggregation in lymphoid cells. Nat New Biol. 1973 Oct 3;245(144):147–148. doi: 10.1038/newbio245147a0. [DOI] [PubMed] [Google Scholar]
  27. Mel H. C., Tenforde T., Glaeser R. M. New electrophoretic information on the surface composition of the rat erythrocyte. Arch Biochem Biophys. 1973 Oct;158(2):533–538. doi: 10.1016/0003-9861(73)90545-6. [DOI] [PubMed] [Google Scholar]
  28. Meyer H. W., Halbhurer K. J., Richter W., Geyer G. Amidination effects on the human erythrocyte membrane. A freeze-etch study. Exp Pathol (Jena) 1974;9(4):208–211. [PubMed] [Google Scholar]
  29. Nicolson G. L., Masouredis S. P., Singer S. J. Quantitative two-dimensional ultrastructural distribution of Rh o (D) antigenic sites on human erythrocyte membranes. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1416–1420. doi: 10.1073/pnas.68.7.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nicolson G. L. The relationship of a fluid membrane structure to cell agglutination and surface topography. Ser Haematol. 1973;6(3):275–291. [PubMed] [Google Scholar]
  31. Nicolson G. L. Topography of membrane concanavalin A sites modified by proteolysis. Nat New Biol. 1972 Oct 18;239(94):193–197. doi: 10.1038/newbio239193a0. [DOI] [PubMed] [Google Scholar]
  32. Niehaus W. G., Jr, Wold F. Cross-linking of erythrocyte membranes with dimethyl adipimidate. Biochim Biophys Acta. 1970;196(2):170–175. doi: 10.1016/0005-2736(70)90004-0. [DOI] [PubMed] [Google Scholar]
  33. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  34. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pollack W., Reckel R. P. The zeta potential and hemagglutination with Rh antibodies. A physiochemical explanation. Int Arch Allergy Appl Immunol. 1970;38(5):482–496. doi: 10.1159/000230301. [DOI] [PubMed] [Google Scholar]
  36. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  37. ROSENFIELD R. E., SZYMANSKI I. O., KOCHWA S. IMMUNOCHEMICAL STUDIES OF THE RH SYSTEM. 3. QUANTITATIVE HEMAGGLUTINATION THAT IS RELATIVELY INDEPENDENT OF SOURCE OF RH ANTIGENS AND ANTIBODIES. Cold Spring Harb Symp Quant Biol. 1964;29:427–434. doi: 10.1101/sqb.1964.029.01.044. [DOI] [PubMed] [Google Scholar]
  38. Romano E. L., Mollison P. L. Mechanism of red cell agglutination by IgG antibodies. Vox Sang. 1973;25(1):28–31. doi: 10.1111/j.1423-0410.1973.tb05207.x. [DOI] [PubMed] [Google Scholar]
  39. Rutishauser U., Sachs L. Receptor mobility and the mechanism of cell-cell binding induced by concanavalin A. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2456–2460. doi: 10.1073/pnas.71.6.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Seaman G. V. The surface chemistry of the erythrocyte and thrombocyte membrane. J Supramol Struct. 1973;1(4):437–447. doi: 10.1002/jss.400010421. [DOI] [PubMed] [Google Scholar]
  41. Seeman P., Iles G. H. Pits in the freeze-cleavage plane of normal erythrocyte membranes; and ultrastructure of membrane lesions in immune lysis. Nouv Rev Fr Hematol. 1972 Nov-Dec;12(6):889–900. [PubMed] [Google Scholar]
  42. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  43. Speth V., Wunderlich F. Membranes of Tetrahymena. II. Direct visualization of reversible transitions in biomembrane structure induced by temperature. Biochim Biophys Acta. 1973 Feb 16;291(3):621–628. doi: 10.1016/0005-2736(73)90467-7. [DOI] [PubMed] [Google Scholar]
  44. Stackpole C. W., De Milio L. T., Hämmerling U., Jacobson J. B., Lardis M. P. Hybrid antibody-induced topographical redistribution of surface immunoglobulins, alloantigens, and concanavalin A receptors on mouse lymphoid cells. Proc Natl Acad Sci U S A. 1974 Mar;71(3):932–936. doi: 10.1073/pnas.71.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Steck T. L. Cross-linking the major proteins of the isolated erythrocyte membrane. J Mol Biol. 1972 May 14;66(2):295–305. doi: 10.1016/0022-2836(72)90481-0. [DOI] [PubMed] [Google Scholar]
  46. Voak D., Cawley J. C., Emmines J. P., Barker C. R. The role of enzymes and albumen in haemagglutination reactions. A Serological and ultrastructural study with ferritin-labelled anti-D. Vox Sang. 1974;27(2):156–170. doi: 10.1111/j.1423-0410.1974.tb02403.x. [DOI] [PubMed] [Google Scholar]
  47. Volger E., Schmid-Schönbein H., Mehrishi J. N. Artificial red cell aggregation caused by reduced salinity: production of a polyalbumin. Bibl Anat. 1973;11:296–302. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES