Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Jan;57(1):149–155. doi: 10.1172/JCI108254

Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding.

L T Williams, R Snyderman, R J Lefkowitz
PMCID: PMC436634  PMID: 1245597

Abstract

Human lymphocytes are known to posessess a catecholamine-responsive adenylate cyclase which has typical beta-adrenergic specificity. To identify directly and to quantitate these beta-adenergic receptors in human lymphocytes, (-) [3H] alprenolol, a potent beta-adrenergic antagonist, was used to label binding sites in homogenates of human mononuclear leukocytes. Binding of (-) [3H] alprenolol to these sites demonstrated the kinetics, affinity, and stereospecificity expected of binding to adenylate cyclase-coupled beta-adrenergic receptors. Binding was rapid (t1/2 less than 30 s) and rapidly reversible (t1/2 less than 3 min) at 37 degrees C. Binding was a saturable process with 75 +/- 12 fmol (-) [3H] alprenolol bound/mg protein (mean +/- SEM) at saturation, corresponding to about 2,000 sites/cell. Half-maximal saturation occurred at 10 nM (-) [3H] alprenolol, which provides an estimate of the dissociation constant of (-) [3H] alprenolol for the beta-adrenergic receptor. The beta-adrenergic antagonist, (-) propranolol, potently competed for the binding sites, causing half-maximal inhibition of binding at 9 nM. beta-Adrenergic agonists also competed for the binding sites. The order of potency was (-) isoproterenol greater than (-) epinephrine greater than (-)-norepinephrine which agreed with the order of potency of these agents in stimulating leukocyte adenylate cyclase. Dissociation constants computed from binding experiments were virtually identical to those obtained from adenylate cyclase activation studies. Marked stereospecificity was observed for both binding and activation of adenylate cyclase. (-)Stereoisomers of beta-adrenergic agonists and antagonists were 9- to 300-fold more potent than their corresponding (+) stereoisomers. Structurally related compounds devoid of beta-adrenergic activity such as dopamine, dihydroxymandelic acid, normetanephrine, pyrocatechol, and phentolamine did not effectively compete for the binding sites. (-) [3H] alprenolol binding to human mononuclear leukocyte preparations was almost entirely accounted for by binding to small lymphocytes, the predominant cell type in the preparations. No binding was detectable to human erythrocytes. These results demonstrate the feasibility of using direct binding methods to study beta-adrenergic receptors in a human tissue. They also provide an experimental approach to the study of states of altered sensitivity to catecholamines at the receptor level in man.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Williams L. T., Lefkowitz R. J. Identification of cardiac beta-adrenergic receptors by (minus) [3H]alprenolol binding. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1564–1568. doi: 10.1073/pnas.72.4.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archer J. A., Gorden P., Roth J. Defect in insulin binding to receptors in obese man. Amelioration with calorie restriction. J Clin Invest. 1975 Jan;55(1):166–174. doi: 10.1172/JCI107907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atlas D., Steer M. L., Levitzki A. Stereospecific binding of propranolol and catecholamines to the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4246–4248. doi: 10.1073/pnas.71.10.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aurbach G. D., Fedak S. A., Woodard C. J., Palmer J. S., Hauser D., Troxler F. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site. Science. 1974 Dec 27;186(4170):1223–1224. doi: 10.1126/science.186.4170.1223. [DOI] [PubMed] [Google Scholar]
  5. Bach M. A. Differences in Cyclic AMP Changes after Stimulation by Prostaglandins and Isoproterenol in Lymphocyte Subpopulations. J Clin Invest. 1975 May;55(5):1074–1081. doi: 10.1172/JCI108008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bourne H. R., Melmon K. L. Adenyl cyclase in human leukocytes: evidence for activation by separate beta adrenergic and prostaglandin receptors. J Pharmacol Exp Ther. 1971 Jul;178(1):1–7. [PubMed] [Google Scholar]
  7. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  8. Cuatrecasas P., Tell G. P., Sica V., Parikh I., Chang K. J. Noradrenaline binding and the search for catecholamine receptors. Nature. 1974 Jan 11;247(5436):92–97. doi: 10.1038/247092a0. [DOI] [PubMed] [Google Scholar]
  9. Furchgott R. F. The pharmacological differentiation of adrenergic receptors. Ann N Y Acad Sci. 1967 Feb 10;139(3):553–570. doi: 10.1111/j.1749-6632.1967.tb41229.x. [DOI] [PubMed] [Google Scholar]
  10. Hadden J. W., Hadden E. M., Middleton E., Jr Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol. 1970 Dec;1(6):583–595. doi: 10.1016/0008-8749(70)90024-9. [DOI] [PubMed] [Google Scholar]
  11. Henney C. S., Bourne H. R., Lichtenstein L. M. The role of cyclic 3',5' adenosine monophosphate in the specific cytolytic activity of lymphocytes. J Immunol. 1972 Jun;108(6):1526–1534. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lefkowitz R. J. Commentary. Molecular pharmacology of beta-adrenergic receptors--a status report. Biochem Pharmacol. 1974 Aug;23(15):2069–2076. doi: 10.1016/0006-2952(74)90571-1. [DOI] [PubMed] [Google Scholar]
  14. Lefkowitz R. J., Mukherjee C., Coverstone M., Caron M. G. Stereospecific (3H)(minus)-alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase. Biochem Biophys Res Commun. 1974 Sep 23;60(2):703–709. doi: 10.1016/0006-291x(74)90297-6. [DOI] [PubMed] [Google Scholar]
  15. Lefkowitz R. J. Stimulation of catecholamine-sensitive adenylate cyclase by 5'-guanylyl-imidodiphosphate. J Biol Chem. 1974 Oct 10;249(19):6119–6124. [PubMed] [Google Scholar]
  16. Lesniak M. A., Gorden P., Roth J., Gavin J. R., 3rd Binding of 125I-human growth hormone to specific receptors in human cultured lymphocytes. Characterization of the interaction and a sensitive radioreceptor assay. J Biol Chem. 1974 Mar 25;249(6):1661–1667. [PubMed] [Google Scholar]
  17. Makman M. H. Properties of adenylate cyclase of lymphoid cells. Proc Natl Acad Sci U S A. 1971 May;68(5):885–889. doi: 10.1073/pnas.68.5.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Melmon K. L., Bourne H. R., Weinstein Y., Shearer G. M., Kram J., Bauminger S. Hemolytic plaque formation by leukocytes in vitro. Control by vasoactive hormones. J Clin Invest. 1974 Jan;53(1):13–21. doi: 10.1172/JCI107530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mukherjee C., Caron M. G., Coverstone M., Lefkowitz R. J. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol. J Biol Chem. 1975 Jul 10;250(13):4869–4876. [PubMed] [Google Scholar]
  20. Parker C. W., Smith J. W. Alterations in cyclic adenosine monophosphate metabolism in human bronchial asthma. I. Leukocyte responsiveness to -adrenergic agents. J Clin Invest. 1973 Jan;52(1):48–59. doi: 10.1172/JCI107173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  22. Sheppard H., Burghardt C. Adenyl cyclase in non-nucleated erythrocytes of several mammalian species. Biochem Pharmacol. 1969 Oct;18(10):2576–2578. doi: 10.1016/0006-2952(69)90374-8. [DOI] [PubMed] [Google Scholar]
  23. Soll A. H., Goldfine I. D., Roth J., Kahn C. R. Thymic lymphocytes in obese (ob-ob) mice. A mirror of the insulin receptor defect in liver and fat. J Biol Chem. 1974 Jul 10;249(13):4127–4131. [PubMed] [Google Scholar]
  24. Wildenthal K. Studies of fetal mouse hearts in organ culture: influence of prolonged exposure to triiodothyronine on cardiac responsiveness to isoproterenol, glucagon, theophylline, acetylcholine and dibutyryl cyclic 3',5'-adenosine monophosphate. J Pharmacol Exp Ther. 1974 Aug;190(2):272–279. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES