Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Feb;57(2):274–282. doi: 10.1172/JCI108278

Effect of adenosine deaminase inhibition upon human lymphocyte blastogenesis.

D A Carson, J E Seegmiller
PMCID: PMC436651  PMID: 176177

Abstract

The biochemical mechanisms by which a genetically determined deficiency of adenosine deaminase leads to immunodeficiency are still poorly understood and prompted this study. We have examined the effects of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) upon the response of human peripheral blood mononuclear cells to the mitogen concanavalin A (Con A). Cells isolated from normal volunteers were incubated in microtiter plates in the presence of various inhibitors, and the incorporation of tritrated thymidine or leucine into macromolecular material was measured after 64 h. EHNA at a concentration of 0.3 muM, which inhibited 90% of the adenosine deaminase (ADA) activity in a mononuclear preparation, impaired the incorporation of tritrated leucine into protein; 100 muM EHNA was the minimal concentration that inhibited thymidine uptake. The addition of 15 muM adenosine or 10 muM cyclic AMP to Con A-stimulated lymphocytes inhibited leucine uptake, while millimolar concentrations were required to inhibit thymidine uptake. Lower doses of adenosine and cyclic AMP stimulated thymidine incorporation. The inhibition of thymidine uptake observed with millimolar concentrations of adenosine was independent of the type of mitogen (pokeweed or Con A), the concentration of mitogen, or the medium used, but could be increased if the cells were cultured in a serum with reduced levels of adenosine deaminase. Washout experiments failed to demonstrate a critical period early in immune induction during which adenosine exerted its inhibitory effects. Noninhibitory doses of EHNA potentiated the effects of adenosine and cyclic AMP on leucine and thymidine uptake. EHNA at a concentration of 50 muM also potentiated the inhibitory effects on thymidine uptake of dibutyryl cyclic AMP, butyric acid, norepinephrine, and isoproterenol, but not theophylline. When mitogenesis was assayed by leucine incorporations, no synergy between EHNA and these compounds was apparent. Uridine relieved to some extent the inhibition of blastogenesis produced by adenosine and cyclic AMP, but not by dibutyryl cyclic AMP, norepinephreine, isoproterenol, or theophylline. Neither uridine alone nor uridine plus adenosine protected lymphocytes from the inhibitory effects of EHNA.

Full text

PDF
274

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blume A. J., Dalton C., Sheppard H. Adenosine-mediated elevation of cyclic 3':5'-adenosine monophosphate concentrations in cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3099–3102. doi: 10.1073/pnas.70.11.3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark R. B., Gross R., Su Y. F., Perkins J. P. Regulation of adenosine 3':5'-monophosphate content in human astrocytoma cells by adenosine and the adenine nucleotides. J Biol Chem. 1974 Aug 25;249(16):5296–5303. [PubMed] [Google Scholar]
  3. Dissing J., Knudsen B. Adenosine-deaminase deficiency and combined immunodeficiency syndrome. Lancet. 1972 Dec 16;2(7790):1316–1316. doi: 10.1016/s0140-6736(72)92692-x. [DOI] [PubMed] [Google Scholar]
  4. Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
  5. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  6. Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
  7. Hadden J. W., Hadden E. M., Middleton E., Jr Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol. 1970 Dec;1(6):583–595. doi: 10.1016/0008-8749(70)90024-9. [DOI] [PubMed] [Google Scholar]
  8. Hilz H., Kaukel E. Divergent action mechanism of cAMP and dibutyryl cAMP on cell proliferation and macromolecular synthesis in HeLa S3 cultures. Mol Cell Biochem. 1973 Jun 27;1(2):229–239. doi: 10.1007/BF01659332. [DOI] [PubMed] [Google Scholar]
  9. Hirschhorn R., Grossman J., Weissmann G. Effect of cyclic 3',5'-adenosine monophosphate and theophylline on lymphocyte transformation. Proc Soc Exp Biol Med. 1970 Apr;133(4):1361–1365. doi: 10.3181/00379727-133-34690. [DOI] [PubMed] [Google Scholar]
  10. Ishii K., Green H. Lethality of adenosine for cultured mammalian cells by interference with pyrimidine biosynthesis. J Cell Sci. 1973 Sep;13(2):429–439. doi: 10.1242/jcs.13.2.429. [DOI] [PubMed] [Google Scholar]
  11. Kaukel E., Fuhrmann U., Hilz H. Divergent action of cAMP and dibutyryl cAMP on macromolecular synthesis in HeLa S3 cultures. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1516–1524. doi: 10.1016/0006-291x(72)90886-8. [DOI] [PubMed] [Google Scholar]
  12. McBurney M. W., Whimore G. F. Mutants of chinese hamster cells resistant to adenosine. J Cell Physiol. 1975 Feb;85(1):87–99. doi: 10.1002/jcp.1040850110. [DOI] [PubMed] [Google Scholar]
  13. Osborne W. R., Spencer N. Partial purification and properties of the common inherited forms of adenosine deaminase from human erythrocytes. Biochem J. 1973 May;133(1):117–123. doi: 10.1042/bj1330117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
  15. Schaeffer H. J., Schwender C. F. Enzyme inhibitors. 26. Bridging hydrophobic and hydrophilic regions on adenosine deaminase with some 9-(2-hydroxy-3-alkyl)adenines. J Med Chem. 1974 Jan;17(1):6–8. doi: 10.1021/jm00247a002. [DOI] [PubMed] [Google Scholar]
  16. Smith J. W., Steiner A. L., Parker C. W. Human lymphocytic metabolism. Effects of cyclic and noncyclic nucleotides on stimulation by phytohemagglutinin. J Clin Invest. 1971 Feb;50(2):442–448. doi: 10.1172/JCI106511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Snyder F. F., Henderson J. F. Alternative pathways of deoxyadenosine and adenosine metabolism. J Biol Chem. 1973 Aug 25;248(16):5899–5904. [PubMed] [Google Scholar]
  18. Wolberg G., Zimmerman T. P., Hiemstra K., Winston M., Chu L. C. Adenosine inhibition of lymphocyte-mediated cytolysis: possible role of cyclic adenosine monophosphate. Science. 1975 Mar 14;187(4180):957–959. doi: 10.1126/science.167434. [DOI] [PubMed] [Google Scholar]
  19. Yount J., Nichols P., Ochs H. D., Hammar S. P., Scott C. R., Chen S. H., Giblett E. R., Wedgwood R. J. Absence of erythrocyte adenosine deaminase associated with severe combined immunodeficiency. J Pediatr. 1974 Feb;84(2):173–177. doi: 10.1016/s0022-3476(74)80597-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES