Abstract
Current methods to isolate and identify anaerobic bacteria are laborious and time consuming. It was postulated that the short-chain fatty acids (SCFA) produced by these organisms might serve as microbial markers in clinical material. 98 specimens of pus or serous fluid were analyzed by gas-liquid chromatography, and findings were compared with culture results. Good correlations were found for the recovery of anaerobic Gram-negative bacilli and the presence of isobutyric, butyric, and succinic acids. 19 of 20 specimens with significant amounts of these acids (greater than 0.01 mumol/ml) yielded bacteroides or fusobacteria. Culture of the single "false-positive" specimen failed to grow anaerobic Gram-negative bacilli, although clinical data and Gram-stain suggested their presence. 77 of 78 specimens which has insignificant concentrations of the marker acids failed to yield anaerobic, Gram-negative bacilli in culture. The single "false-negative" specimen yielded Bacteroides pneumosintes, an organism which does not ferment carbohydrates. It is concluded that direct gas-liquid chromatographic analysis of clinical specimens provides a rapid presumptive test for the presence of anaerobic, Gram-negative bacilli.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amstein C. F., Hartman P. A. Differentiation of some enterococci by gas chromatography. J Bacteriol. 1973 Jan;113(1):38–41. doi: 10.1128/jb.113.1.38-41.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks J. B., Alley C. C., Weaver J. W., Green V. E., Harkness A. M. Practical methods for derivatizing and analyzing bacterial metabolites with a modified automatic injector and gas chromatograph. Anal Chem. 1973 Oct;45(12):2083–2087. doi: 10.1021/ac60334a022. [DOI] [PubMed] [Google Scholar]
- Brooks J. B., Kellogg D. S., Alley C. C., Short H. B., Handsfield H. H., Huff B. Gas chromatography as a potential means of diagnosing arthritis. I. Differentiation between staphylococcal, streptococcal, gonococcal, and traumatic arthritis. J Infect Dis. 1974 Jun;129(6):660–668. doi: 10.1093/infdis/129.6.660. [DOI] [PubMed] [Google Scholar]
- Carlsson J. Simplified gas chromatographic procedure for identification of bacterial metabolic products. Appl Microbiol. 1973 Feb;25(2):287–289. doi: 10.1128/am.25.2.287-289.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherry W. B., Moss C. W. The role of gas chromatography in the clinical microbiology laboratory. J Infect Dis. 1969 Jun;119(6):658–662. doi: 10.1093/infdis/119.6.658. [DOI] [PubMed] [Google Scholar]
- Gorbach S. L., Bartlett J. G. Anaerobic infections. 1. N Engl J Med. 1974 May 23;290(21):1177–1184. doi: 10.1056/NEJM197405232902106. [DOI] [PubMed] [Google Scholar]
- Mitruka B. M., Alexander M., Carmichael L. E. Gas chromatography for detection of viral infections. Science. 1968 Apr 19;160(3825):309–311. doi: 10.1126/science.160.3825.309. [DOI] [PubMed] [Google Scholar]
- Mitruka B. M., Alexander M. Rapid and sensitive detection of bacteria by gas chromatography. Appl Microbiol. 1968 Apr;16(4):636–640. doi: 10.1128/am.16.4.636-640.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitruka B. M., Carmichael L. E., Alexander M. Gas chromatographic detection of in vitro and in vivo activities of certain canine viruses. J Infect Dis. 1969 Jun;119(6):625–634. doi: 10.1093/infdis/119.6.625. [DOI] [PubMed] [Google Scholar]
- Mitruka B. M., Jonas A. M., Alexander M., Kundargi R. S. Rapid differentiation of certain bacteria in mixed populations by gas-liquid chromatography. Yale J Biol Med. 1973 Apr;46(2):104–112. [PMC free article] [PubMed] [Google Scholar]
- Mitruka B. M., Jonas A. M., Alexander M. Rapid detection of bacteremia in mice by gas chromatography. Infect Immun. 1970 Oct;2(4):474–478. doi: 10.1128/iai.2.4.474-478.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitruka M., Kundargi R. S., Jonas A. M. Gas chromatography for rapid differentiation of bacterial infections in man. Med Res Eng. 1972;11(2):7–11. [PubMed] [Google Scholar]
- Moss C. W., Lewis V. J. Characterization of clostridia by gas chromatography. I. Differentiation of species by cellular fatty acids. Appl Microbiol. 1967 Mar;15(2):390–397. doi: 10.1128/am.15.2.390-397.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss C. W., Samuels S. B. Short-chain acids of Pseudomonas species encountered in clinical specimens. Appl Microbiol. 1974 Mar;27(3):570–574. doi: 10.1128/am.27.3.570-574.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thadepalli H., Gorbach S. L., Broido P. W., Norsen J., Nyhus L. Abdominal trauma, anaerobes, and antibiotics. Surg Gynecol Obstet. 1973 Aug;137(2):270–276. [PubMed] [Google Scholar]
- Thoen C. O., Karlson A. G., Ellefson R. D. Fatty acids of Mycobacterium kansasii. Appl Microbiol. 1971 Apr;21(4):628–632. doi: 10.1128/am.21.4.628-632.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wade T. J., Mandle R. J. New gas chromatographic characterization procedure: preliminary studies on some Pseudomonas species. Appl Microbiol. 1974 Feb;27(2):303–311. doi: 10.1128/am.27.2.303-311.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]