Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Feb;57(2):496–508. doi: 10.1172/JCI108302

Identification and characterization of a bile acid receptor in isolated liver surface membranes.

L Accatino, F R Simon
PMCID: PMC436675  PMID: 3520

Abstract

It is generally assumed that hepatic transport of bile acids is a carrier-mediated process. However, the basic mechanisms by which these organic anions are translocated across the liver cell surface membrane are not well understood. Since carrier-mediated transport involved binding of the transported molecule to specific receptor sites, we have investigated the possibility that bile acid receptors are present in liver surface membranes. Isolated liver surface membranes were incubated at 4 degrees C with [14C]cholic acid and [14C]taurocholic acid, and membrane-boudn bile acid was separated from free by a rapid ultrafiltration technique through glass-fiber filters. Specific bile acid binding is rapid and reversible and represents approximately 80% of the total bile acid bound to liver surface membranes. Taurocholic acid binding is independent of the medium pH, while cholic acid binding demonstrates an optimum at pH 6.0. Analysis of equilibrium data for both cholic and taurocholic acid binding indicates that specific binding is saturable and consistent with Michaelis-Menten kinetics, while nonspecific binding is nonsaturable. Apparent maximal binding capacity and dissociation constant values indicate a large capacity system of receptors that have an affinity for bile acids comparable to that of the hepatic transport mechanism. Scatchard analysis of the saturation kinetics as well as inhibition studies suggest that bile acids bind to a single and noninteracting class of anion that competes with bile acids for hepatic uptake, also inhibits cholic acid binding. In contrast, no inhibition was demonstrated with indocyanine green and probenecid. Specific bile acid binding is enriched and primarily located in liver surface membranes and found only in tissues involved in bile acid transport. Specific bile acid binding is independnet of Na+, Ca2+, and Mg2+ and does not require metabolic energy. In addition, thiol groups and disulfide are not required for activity at the binding site. However, specific bile acid binding is markedly decreased by low concentrations of proteolytic enzymes and is also decreased by the action of neuraminidase and phospholipases A and C. These results are consistent with the existence of a homogeneous bile acid receptor protein in liver surface membranes. The primary surface membrane location of this receptor, its binding properties, and its ligand specificity suggest that bile acid binding to this receptor may represent the initial interaction in bile acid transport across liver surface membranes.

Full text

PDF
496

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREWS W. H., RICHARDS T. G. The activity of bile salts and certain detergents on the hepatic storage and protein-binding of sulphobromophthalein. Q J Exp Physiol Cogn Med Sci. 1960 Jul;45:275–283. doi: 10.1113/expphysiol.1960.sp001472. [DOI] [PubMed] [Google Scholar]
  2. Banerjee S. P., Cuatrecasas P., Snyder S. H. Nerve growth factor receptor binding. Influence of enzymes, ions, and protein reagents. J Biol Chem. 1975 Feb 25;250(4):1427–1433. [PubMed] [Google Scholar]
  3. Baulieu E. E., Raynaud J. P. A "proportion graph" method for measuring binding systems. Eur J Biochem. 1970 Apr;13(2):293–304. doi: 10.1111/j.1432-1033.1970.tb00931.x. [DOI] [PubMed] [Google Scholar]
  4. Burke C. W., Lewis B., Panveliwalla D., Tabaqchali S. The binding of cholic acid and its taurine conjugate to serum proteins. Clin Chim Acta. 1971 Apr;32(2):207–214. doi: 10.1016/0009-8981(71)90334-2. [DOI] [PubMed] [Google Scholar]
  5. CHERRICK G. R., STEIN S. W., LEEVY C. M., DAVIDSON C. S. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest. 1960 Apr;39:592–600. doi: 10.1172/JCI104072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carey M. C., Small D. M. Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch Intern Med. 1972 Oct;130(4):506–527. [PubMed] [Google Scholar]
  7. Chesney R. W., Sacktor B., Rowen R. The binding of D-glucose to the isolated luminal membrane of the renal proximal tubule. J Biol Chem. 1973 Mar 25;248(6):2182–2191. [PubMed] [Google Scholar]
  8. Cooper A. D., Ockner R. K. Studies of hepatic cholesterol synthesis in experimental acute biliary obstruction. Gastroenterology. 1974 Apr;66(4):586–595. [PubMed] [Google Scholar]
  9. Cuatrecasas P. Editorial: Problems in receptor identification: catecholamines. N Engl J Med. 1974 Jul 25;291(4):206–206. doi: 10.1056/NEJM197407252910413. [DOI] [PubMed] [Google Scholar]
  10. Cuatrecasas P. Unmasking of insulin receptors in fat cells and fat cell membranes. Perturbation of membrane lipids. J Biol Chem. 1971 Nov;246(21):6532–6542. [PubMed] [Google Scholar]
  11. Cutrecasas P. Perturbation of the insulin receptor of isolated fat cells with proteolytic enzymes. Direct measurement of insulin-receptor interactions. J Biol Chem. 1971 Nov;246(21):6522–6531. [PubMed] [Google Scholar]
  12. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dehlinger P. J., Schimke R. T. Size distribution of membrane proteins of rat liver and their relative rates of degradation. J Biol Chem. 1971 Apr 25;246(8):2574–2583. [PubMed] [Google Scholar]
  14. Delage Y., Erlinger S., Duval M., Bpenhamou J. P. Influence of dehydrocholate and taurocholate on bromsulphthalein uptake, storage, and excretion in the dog. Gut. 1975 Feb;16(2):105–108. doi: 10.1136/gut.16.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dietschy J. M. Mechanisms for the intestinal absorption of bile acids. J Lipid Res. 1968 May;9(3):297–309. [PubMed] [Google Scholar]
  16. Eichholz A., Howell K. E. Binding studies as an approach to the study of intestinal transport. Gastroenterology. 1972 Apr;62(4):647–667. [PubMed] [Google Scholar]
  17. Erlinger S. Hepatocellular uptake of taurocholate in the dog. J Clin Invest. 1975 Feb;55(2):419–426. doi: 10.1172/JCI107946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Evans W. H., Gurd J. W. Biosynthesis of liver membranes. Incorporation of ( 3 H)leucine into proteins and of ( 14 C)glucosamine into proteins and lipids of liver microsomal and plasma-membrane fractions. Biochem J. 1971 Nov;125(2):615–624. doi: 10.1042/bj1250615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. GORESKY C. A. INITIAL DISTRIBUTION AND RATE OF UPTAKE OF SULFOBROMOPHTHALEIN IN THE LIVER. Am J Physiol. 1964 Jul;207:13–26. doi: 10.1152/ajplegacy.1964.207.1.13. [DOI] [PubMed] [Google Scholar]
  20. Glossmann H., Neville D. M., Jr Phlorizin receptors in isolated kidney brush border membranes. J Biol Chem. 1972 Dec 10;247(23):7779–7789. [PubMed] [Google Scholar]
  21. Horak W., Grabner G., Paumgartner G. Effect of indocyanine green on bile flow and bile salt excretion. Helv Med Acta. 1973 Sep;37(2):169–174. [PubMed] [Google Scholar]
  22. Ismail-Beigi F., Edelman I. S. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity. J Gen Physiol. 1971 Jun;57(6):710–722. doi: 10.1085/jgp.57.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kahn C. R., Freychet P., Roth J., Neville D. M., Jr Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J Biol Chem. 1974 Apr 10;249(7):2249–2257. [PubMed] [Google Scholar]
  24. Katz M., Cooper B. A. Solubilized receptor for intrinsic factor-Vitamin B12 complex from guinea pig intestinal mucosa. J Clin Invest. 1974 Sep;54(3):733–739. doi: 10.1172/JCI107811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kenwright S., Levi A. J. Impairment of hepatic uptake of rifamycin antibiotics by probenecid, and its therapeutic implications. Lancet. 1973 Dec 22;2(7843):1401–1405. doi: 10.1016/s0140-6736(73)92799-2. [DOI] [PubMed] [Google Scholar]
  26. Kirsch R., Fleischner G., Kamisaka K., Arias I. M. Structural and functional studies of ligandin, a major renal organic anion-binding protein. J Clin Invest. 1975 May;55(5):1009–1019. doi: 10.1172/JCI108001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Lefkowitz R. J. Isolated hormone receptors: physiologic and clinical implications. N Engl J Med. 1973 May 17;288(20):1061–1066. doi: 10.1056/NEJM197305172882009. [DOI] [PubMed] [Google Scholar]
  29. Mitchell C. D., Mitchell W. B., Hanahan D. J. Enzyme and hemoglobin retention in human erythrocyte stroma. Biochim Biophys Acta. 1965 Jul 8;104(2):348–358. doi: 10.1016/0304-4165(65)90340-5. [DOI] [PubMed] [Google Scholar]
  30. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  31. O'Máille E. R., Richards T. G., Short A. H. Acute taurine depletion and maximal rates of hepatic conjugation and secretion of cholic acid in the dog. J Physiol. 1965 Sep;180(1):67–79. [PMC free article] [PubMed] [Google Scholar]
  32. O'Máille E. R., Richards T. G., Short A. H. Factors determining the maximal rate of organic anion secretion by the liver and further evidence on the hepatic site of action of the hormone secretin. J Physiol. 1966 Oct;186(2):424–438. doi: 10.1113/jphysiol.1966.sp008044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. O'Máille E. R., Richards T. G., Short A. H. The influence of conjugation of cholic acid on its uptake and secretion: hepatic extraction of taurocholate and cholate in the dog. J Physiol. 1967 Apr;189(2):337–350. doi: 10.1113/jphysiol.1967.sp008172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  35. PRATT E. B., BURDICK F. D., HOLMES J. H. Measurement of liver blood flow in unanesthetized dog using the bromsulfalein dye method. Am J Physiol. 1952 Nov;171(2):471–478. doi: 10.1152/ajplegacy.1952.171.2.471. [DOI] [PubMed] [Google Scholar]
  36. Pardee A. B. Membrane transport proteins. Proteins that appear to be parts of membrane transport systems are being isolated and characterized. Science. 1968 Nov 8;162(3854):632–637. doi: 10.1126/science.162.3854.632. [DOI] [PubMed] [Google Scholar]
  37. Pohl S. L., Birnbaumer L., Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties. J Biol Chem. 1971 Mar 25;246(6):1849–1856. [PubMed] [Google Scholar]
  38. RUDMAN D., KENDALL F. E. Bile acid content of human serum. II. The binding of cholanic acids by human plasma proteins. J Clin Invest. 1957 Apr;36(4):538–542. doi: 10.1172/JCI103451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reichen J., Paumgartner G. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology. 1975 Jan;68(1):132–136. [PubMed] [Google Scholar]
  40. Roth J. Peptide hormone binding to receptors: a review of direct studies in vitro. Metabolism. 1973 Aug;22(8):1059–1073. doi: 10.1016/0026-0495(73)90225-4. [DOI] [PubMed] [Google Scholar]
  41. STRAUS W. Colorimetric determination of cytochrome c oxidase by formation of a quinoedimonium pigment from dimethyl-p-phenylenediamine. Biochim Biophys Acta. 1956 Jan;19(1):58–65. doi: 10.1016/0006-3002(56)90385-7. [DOI] [PubMed] [Google Scholar]
  42. Schiff E. R., Small N. C., Dietschy J. M. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest. 1972 Jun;51(6):1351–1362. doi: 10.1172/JCI106931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Simon F. R., Arias I. M. Alterations in liver plasma membranes and their possible role in cholestasis. Gastroenterology. 1972 Feb;62(2):342–345. [PubMed] [Google Scholar]
  44. Small D. M., Dowling R. H., Redinger R. N. The enterohepatic circulation of bile salts. Arch Intern Med. 1972 Oct;130(4):552–573. [PubMed] [Google Scholar]
  45. Song C. S., Bodansky O. Subcellular localization and properties of 5'-nucleotidase in the rat liver. J Biol Chem. 1967 Feb 25;242(4):694–699. [PubMed] [Google Scholar]
  46. Tomasi V., Koretz S., Ray T. K., Dunnick J., Marinetti G. V. Hormone action at the membrane level. II. The binding of epinephrine and glucagon to the rat liver plasma membrane. Biochim Biophys Acta. 1970 Jul 7;211(1):31–42. doi: 10.1016/0005-2736(70)90120-3. [DOI] [PubMed] [Google Scholar]
  47. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  48. WEINER I. M., GLASSER J. E., LACK L. RENAL EXCRETION OF BILE ACIDS: TAUROCHOLIC, GLYCOCHOLIC, AND COLIC ACIDS. Am J Physiol. 1964 Nov;207:964–970. doi: 10.1152/ajplegacy.1964.207.5.964. [DOI] [PubMed] [Google Scholar]
  49. WHEELER H. O., CRANSTON W. I., MELTZER J. I. Hepatic uptake and biliary excretion of indocyanine green in the dog. Proc Soc Exp Biol Med. 1958 Oct;99(1):11–14. doi: 10.3181/00379727-99-24229. [DOI] [PubMed] [Google Scholar]
  50. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wheeler H. O. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch Intern Med. 1972 Oct;130(4):533–541. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES