Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Mar;57(3):594–603. doi: 10.1172/JCI108315

A rabbit reticulocyte model for the role of hemin-controlled repressor in hypochromic anemias.

M L Freedman, J Rosman
PMCID: PMC436692  PMID: 2617

Abstract

Hemin allows maximal protein synthesis in intact rabbit reticulocytes and their cell-free lysate preparations by retarding the formation of a translational repressor (HCR) found in the postribosomal supernate. In order to evaluate the role of HCR in the pathogenesis of hypochromic anemias, HCR was isolated and partially purified from intact rabbit reticulocytes incubated in vitro with either 0.1 mM alpha,alpha-dipyridyl (an iron-chelating agent) or 0.1 M ethanol. Both of these agents inhibit reticulocyte protein synthesis. Hemin (50 muM) protects against the inhibition by both agents. A ferrous iron-transferrin mixture, however, protects only against alpha,alpha-dipyridyl. Both alpha,alpha-dipyridyl and ethanol inhibit heme synthesis before the time that protein synthesis is affected, while neither lowers either ATP or GSH levels. These results indicate that while both agents inhibit heme synthesis, alpha,alpha-dipyridyl does so by inducing iron deficiency while ethanol works at a non-iron-requiring step. When HCR was isolated from intact cells and assayed in the reticulocyte cell-free systems, plus and minus hemin, premature appearance of HCR was found in cells incubated in vitro with alpha,alpha-dipyridyl or ethanol. When hemin was present in the intact cell incubation, the appearance of HCR was retarded. The HCR from alpha,alpha-dipyridyl ethanol-treated cells was partially purified and eluted at the same location on a Sephadex G-200 column (molecular weight approximately 3 x 10(5)) as that from postribosomal supernates incubated minus hemin. In addition rabbits with phenylhydrazine-induced hemolytic anemia were given intravenous ethanol in vivo at a dose of 0.4 ml/kg. This concentration of alcohol resulted in an inhibition of the rate of heme synthesis and protein synthesis as well as an acceleration of HCR formation in reticulocytes. The HCR from these in vivo treated rabbits was isolated, partially purified, and assayed in an identical fashion as the in vitro experiments. These in vivo experiments further support the physiological and pathophysiological role of HCR in reticulocytes. On the basis of these results a model for a role of HCR in some of the hypochromic anemias is proposed. In iron deficiency or chronic disease (where iron is not available to the erythroblast for heme synthesis) HCR appears prematurely and inhibits protein synthesis. When heme synthesis is inhibited by ethanol but there is sufficient intracellular iron, HCR appears prematurely and inhibits protein synthesis, iron accumulates in the erythroblast, and the end result is sideroblastic anemia.

Full text

PDF
594

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson S. D., Herbert E., Godchaux W. Factors affecting the rate of protein synthesis in lysate systems from reticulocytes. Arch Biochem Biophys. 1968 May;125(2):671–683. doi: 10.1016/0003-9861(68)90625-5. [DOI] [PubMed] [Google Scholar]
  2. Adamson S. D., Yau P. M., Herbert E., Zucker W. V. Involvement of hemin, a stimulatory fraction from ribosomes and a protein synthesis inhibitor in the regulation of hemoglobin synthesis. J Mol Biol. 1972 Jan 28;63(2):247–264. doi: 10.1016/0022-2836(72)90373-7. [DOI] [PubMed] [Google Scholar]
  3. Ali M. A., Brain M. C. Ethanol inhibition of haemoglobin synthesis: in vitro evidence for a haem correctable defect in normal subjects and in alcoholics. Br J Haematol. 1974 Nov;28(3):311–316. doi: 10.1111/j.1365-2141.1974.tb00811.x. [DOI] [PubMed] [Google Scholar]
  4. Ali M. A., Sweeney G. Erythrocyte coproporphyrin and protoporphyrin in ethanol-induced sideroblastic erthropoiesis. Blood. 1974 Feb;43(2):291–295. [PubMed] [Google Scholar]
  5. BEUTLER E., DURON O., KELLY B. M. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963 May;61:882–888. [PubMed] [Google Scholar]
  6. BRUNS G. P., LONDON I. M. THE EFFECT OF HEMIN ON THE SYNTHESIS OF GLOBIN. Biochem Biophys Res Commun. 1965 Jan 18;18:236–242. doi: 10.1016/0006-291x(65)90746-1. [DOI] [PubMed] [Google Scholar]
  7. Balkow K., Mizuno S., Fisher J. M., Rabinovitz M. Hemin control of globin synthesis: effect of a translational repressor on Met-tRNAf binding to the small ribosomal subunit and its relation to the activity and alailability of an initiation factor. Biochim Biophys Acta. 1973 Oct 26;324(3):397–409. doi: 10.1016/0005-2787(73)90284-0. [DOI] [PubMed] [Google Scholar]
  8. Balkow K., Mizuno S., Rabinovitz M. Inhibition of an initiation codon function by hemin deficiency and the hemin-controlled translational repressor in the reticulocyte cell-free system. Biochem Biophys Res Commun. 1973 Sep 5;54(1):315–323. doi: 10.1016/0006-291x(73)90925-x. [DOI] [PubMed] [Google Scholar]
  9. Beuzard Y., Rodvien R., London I. M. Effect of hemin on the synthesis of hemoglobin and other proteins in mammalian cells. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1022–1026. doi: 10.1073/pnas.70.4.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CHU T. C., CHU E. J. H. Paper chromatography of iron complexes of porphyrins. J Biol Chem. 1955 Jan;212(1):1–7. [PubMed] [Google Scholar]
  11. Clemens M. J., Henshaw E. C., Rahamimoff H., London I. M. Met-tRNAfMet binding to 40S ribosomal subunits: a site for the regulation of initiation of protein synthesis by hemin. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2946–2950. doi: 10.1073/pnas.71.8.2946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Darnbrough C., Legon S., Hunt T., Jackson R. J. Initiation of protein synthesis: evidence for messenger RNA-independent binding of methionyl-transfer RNA to the 40 S ribosomal subunit. J Mol Biol. 1973 May 25;76(3):379–403. doi: 10.1016/0022-2836(73)90511-1. [DOI] [PubMed] [Google Scholar]
  13. Douglas S. W., Adamson J. W. The anemia of chronic disorders: studies of marrow regulation and iron metabolism. Blood. 1975 Jan;45(1):55–65. [PubMed] [Google Scholar]
  14. Freedman M. L., Cohen H. S., Rosman J., Forte F. J. Ethanol inhibition of reticulocyte protein synthesis: the role of haem. Br J Haematol. 1975 Jul;30(3):351–363. doi: 10.1111/j.1365-2141.1975.tb00551.x. [DOI] [PubMed] [Google Scholar]
  15. Freedman M. L., Geraghty M., Rosman J. Hemin control of globin synthesis. Isolation of a hemin-reversible translational repressor from human mature erythrocytes. J Biol Chem. 1974 Nov 25;249(22):7290–7294. [PubMed] [Google Scholar]
  16. Freedman M. L., Karpatkin S. Requirement of iron for platelet protein synthesis. Biochem Biophys Res Commun. 1973 Sep 18;54(2):475–481. doi: 10.1016/0006-291x(73)91445-9. [DOI] [PubMed] [Google Scholar]
  17. Grayzel A. I., Hörchner P., London I. M. The stimulation of globin synthesis by heme. Proc Natl Acad Sci U S A. 1966 Mar;55(3):650–655. doi: 10.1073/pnas.55.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gross M., Rabinovitz M. Control of globin synthesis by hemin: factors influencing formation of an inhibitor of globin chain initiation in reticulocyte lysates. Biochim Biophys Acta. 1972 Dec 6;287(2):340–352. doi: 10.1016/0005-2787(72)90383-8. [DOI] [PubMed] [Google Scholar]
  19. Gross M., Rabinovitz M. Control of globin synthesis in cell-free preparations of reticulocytes by formation of a translational repressor that is inactivated by hemin. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1565–1568. doi: 10.1073/pnas.69.6.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Howard G. A., Adamson S. D., Herbert E. Studies on cessation of protein synthesis in a reticulocyte lysate cell-free system. Biochim Biophys Acta. 1970 Jul 16;213(1):237–240. doi: 10.1016/0005-2787(70)90028-6. [DOI] [PubMed] [Google Scholar]
  21. Hunt T., Vanderhoff G., London I. M. Control of globin synthesis: the role of heme. J Mol Biol. 1972 May 28;66(3):471–481. doi: 10.1016/0022-2836(72)90427-5. [DOI] [PubMed] [Google Scholar]
  22. KARIBIAN D., LONDON I. M. CONTROL OF HEME SYNTHESIS BY FEEDBACK INHIBITION. Biochem Biophys Res Commun. 1965 Jan 18;18:243–249. doi: 10.1016/0006-291x(65)90747-3. [DOI] [PubMed] [Google Scholar]
  23. KRUH J., BORSOOK H. Hemoglobin synthesis in rabbit reticulocytes in vitro. J Biol Chem. 1956 Jun;220(2):905–915. [PubMed] [Google Scholar]
  24. Kaplan B. H., Tricoche M., Vanderhoff G. Regulatory role of heme. Ann N Y Acad Sci. 1974 Nov 29;241(0):334–346. doi: 10.1111/j.1749-6632.1974.tb21891.x. [DOI] [PubMed] [Google Scholar]
  25. Kosower N. S., Vanderhoff G. A., Kosower E. M. Glutathione. 8. The effects of glutathione disulfide on initiation of protein synthesis. Biochim Biophys Acta. 1972 Jul 31;272(4):623–637. [PubMed] [Google Scholar]
  26. Legon S., Jackson R. J., Hunt T. Control of protein synthesis in reticulocyte lysates by haemin. Nat New Biol. 1973 Jan 31;241(109):150–152. doi: 10.1038/newbio241150a0. [DOI] [PubMed] [Google Scholar]
  27. Lodish H. F. Biosynthesis of reticulocyte membrane proteins by membrane-free polyribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1526–1530. doi: 10.1073/pnas.70.5.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maxwell C. R., Kamper C. S., Rabinovitz M. Hemin control of globin synthesis: an assay for the inhibitor formed in the absence of hemin and some characteristics of its formation. J Mol Biol. 1971 May 28;58(1):317–327. doi: 10.1016/0022-2836(71)90249-x. [DOI] [PubMed] [Google Scholar]
  29. Maxwell C. R., Rabinovitz M. Evidence for an inhibitor in the control of globin synthesis by hemin in a reticulocyte lysate. Biochem Biophys Res Commun. 1969 Apr 10;35(1):79–85. doi: 10.1016/0006-291x(69)90485-9. [DOI] [PubMed] [Google Scholar]
  30. Mizuno S., Fisher J. M., Rabinovitz M. Hemin control of globin synthesis: action of an inhibitor formed in the absence of hemin on the reticulocyte cell-free system and its reversal by a ribosomal factor. Biochim Biophys Acta. 1972 Jul 31;272(4):638–650. [PubMed] [Google Scholar]
  31. Nakao K., Takaku F. Utilization of propionate for heme synthesis in human bone marrow cells in vitro. J Lab Clin Med. 1968 Dec;72(6):958–965. [PubMed] [Google Scholar]
  32. Rabinovitz M., Freedman M. L., Fisher J. M., Maxwell C. R. Translational control in hemoglobin syntheskis. Cold Spring Harb Symp Quant Biol. 1969;34:567–578. doi: 10.1101/sqb.1969.034.01.064. [DOI] [PubMed] [Google Scholar]
  33. Raffel C., Stein S., Kaempfer R. Role for heme in mammalian protein synthesis: activation of an initiation factor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4020–4024. doi: 10.1073/pnas.71.10.4020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Velez R., Farrell N. L., Freedman M. L. Selective proteolytic dissociation of rabbit reticulocyte single ribosomes not attached to messenger RNA. Biochim Biophys Acta. 1971 Feb 11;228(3):719–727. doi: 10.1016/0005-2787(71)90736-2. [DOI] [PubMed] [Google Scholar]
  35. WAXMAN H. S., RABINOVITZ M. IRON SUPPLEMENTATION IN VITRO AND THE STATE OF AGGREGATION AND FUNCTION OF RETICULOCYTE RIBOSOMES IN HEMOGLOBIN SYNTHESIS. Biochem Biophys Res Commun. 1965 May 3;19:538–545. doi: 10.1016/0006-291x(65)90159-2. [DOI] [PubMed] [Google Scholar]
  36. Waxman H. S., Freedman M. L., Rabinovitz M. Studies with 59Fe-labeled hemin on the control of polyribosome formation in rabbit reticulocytes. Biochim Biophys Acta. 1967 Sep 26;145(2):353–360. doi: 10.1016/0005-2787(67)90053-6. [DOI] [PubMed] [Google Scholar]
  37. Zucker W. V., Schulman H. M. Stimulation of globin-chain initiation by hemin in the reticulocyte cell-free system. Proc Natl Acad Sci U S A. 1968 Feb;59(2):582–589. doi: 10.1073/pnas.59.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES