Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Mar;57(3):722–731. doi: 10.1172/JCI108330

Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon.

R S Sherwin, C Bastl, F O Finkelstein, M Fisher, H Black, R Hendler, P Felig
PMCID: PMC436707  PMID: 1249205

Abstract

To evaluate the mechanism and role of hyperglucagonemia in the carbohydrate intolerance of uremia, 19 patients with chronic renal failure (12 of whom had undergone chronic hemodialysis for at least 11 mo) and 35 healthy control subjects were studied. Plasma glucagon, glucose, and insulin were measured in the basal state, after glucose ingestion (100 g), after intravenous alanine (0.15 g/kg), and during a 3-h continuous infusion of glucagon (3 ng/kg per min) which in normal subjects, raised plasma glucagon levels into the upper physiological range. Basal concentrations of plasma glucagon, the increment in glucagon after infusion of alanine, and post-glucose glucagon levels were three- to fourfold greater in uremic patients than in controls. The plasma glucagon increments after the infusion of exogenous glucagon were also two- to threefold greater in the uremics. The metabolic clearance rate (MCR) of glucagon in uremics was reduced by 58% as compared to controls. In contrast, the basal systemic delivery rate (BSDR) of glucagon in uremics was not significantly different from controls. Comparison of dialyzed and undialyzed uremics showed no differences with respect to plasma concentrations, MCR, or BSDR of glucagon. However, during the infusion of glucagon, the increments in plasma glucose in undialyzed uremics were three- to fourfold greater than in dialyzed uremics or controls. When the glucagon infusion rate was increased in controls to 6 ng/kg per min to produce increments in plasma glucagon comparable to uremics, the glycemic response remained approximately twofold greater in the undialyzed uremics. The plasma glucose response to glucagon in the uremics showed a direct linear correlation with oral glucose tolerance which was also improved with dialysis. The glucagon infusion resulted in 24% reduction in plasma alanine in uremics but had no effect on alanine levels in controls. It is concluded that (a) hyperglucagonemia in uremia is primarily a result of decreased catabolism rather than hypersecretion of this hormone; (b) sensitivity to the hyperglycemic effect of physiological increments in glucagon is increased in undialyzed uremic patients; and (c) dialysis normalizes the glycemic response to glucagon, possibly accounting thereby for improved glucose tolerance despite persistent hyperglucagonemia. These findings thus provide evidence of decreased hormonal catabolism contributing to a hyperglucagonemic state, and of altered tissue sensitivity contributing to the pathophysiological action of this hormone.

Full text

PDF
722

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alford F. P., Bloom S. R., Nabarro J. D., Hall R., Besser G. M., Coy D. H., Kastin A. J., Schally A. V. Glucagon control of fasting glucose in man. Lancet. 1974 Oct 26;2(7887):974–977. doi: 10.1016/s0140-6736(74)92071-6. [DOI] [PubMed] [Google Scholar]
  2. Bilbrey G. L., Faloona G. R., White M. G., Atkins C., Hull A. R., Knochel J. P. Hyperglucagonemia in uremia: reversal by renal transplantation. Ann Intern Med. 1975 Apr;82(4):525–528. doi: 10.7326/0003-4819-82-4-525. [DOI] [PubMed] [Google Scholar]
  3. Bilbrey G. L., Faloona G. R., White M. G., Knochel J. P. Hyperglucagonemia of renal failure. J Clin Invest. 1974 Mar;53(3):841–847. doi: 10.1172/JCI107624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackard W. G., Nelson N. C., Andrews S. S. Portal and peripheral vein immunoreactive glucagon concentrations after arginine or glucose infusions. Diabetes. 1974 Mar;23(3):199–202. doi: 10.2337/diab.23.3.199. [DOI] [PubMed] [Google Scholar]
  5. COHEN B. D. Abnormal carbohydrate metabolism in renal disease. Blood glucose unresponsiveness to hypoglycemia, epinephrine, and glucagon. Ann Intern Med. 1962 Aug;57:204–213. doi: 10.7326/0003-4819-57-2-204. [DOI] [PubMed] [Google Scholar]
  6. Cerletty J. M., Engbring N. H. Azotemia and glucose intolerance. Ann Intern Med. 1967 Jun;66(6):1097–1108. doi: 10.7326/0003-4819-66-6-1097. [DOI] [PubMed] [Google Scholar]
  7. Condon J. R., Asatoor A. M. Amino acid metabolism in uraemic patients. Clin Chim Acta. 1971 May;32(3):333–337. doi: 10.1016/0009-8981(71)90433-5. [DOI] [PubMed] [Google Scholar]
  8. Davidson M. B., Lowrie E. G., Hampers C. L. Lack of dialyzable insulin antagonist in uremia. Metabolism. 1969 May;18(5):387–394. doi: 10.1016/0026-0495(69)90067-5. [DOI] [PubMed] [Google Scholar]
  9. DeFronzo R. A., Andres R., Edgar P., Walker W. G. Carbohydrate metabolism in uremia: a review. Medicine (Baltimore) 1973 Sep;52(5):469–481. doi: 10.1097/00005792-197309000-00009. [DOI] [PubMed] [Google Scholar]
  10. Felig P. Amino acid metabolism in man. Annu Rev Biochem. 1975;44:933–955. doi: 10.1146/annurev.bi.44.070175.004441. [DOI] [PubMed] [Google Scholar]
  11. Felig P., Gusberg R., Hendler R., Gump F. E., Kinney J. M., Mulrow P. J. Concentrations of glucagon and the insulin:glucagon ratio in the portal and peripheral circulation. Proc Soc Exp Biol Med. 1974 Oct;147(1):88–90. doi: 10.3181/00379727-147-38286. [DOI] [PubMed] [Google Scholar]
  12. Felig P., Owen O. E., Wahren J., Cahill G. F., Jr Amino acid metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):584–594. doi: 10.1172/JCI106017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gulyassy P. F., Aviram A., Peters J. H. Evaluation of amino acid and protein requirements in chronic uremia. Arch Intern Med. 1970 Nov;126(5):855–859. [PubMed] [Google Scholar]
  14. HOLT L. E., Jr, SNYDERMAN S. E., NORTON P. M., ROITMAN E., FINCH J. THE PLASMA AMINOGRAM IN KWASHIORKOR. Lancet. 1963 Dec 28;2(7322):1342–1348. [PubMed] [Google Scholar]
  15. HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
  16. Hampers C. L., Soeldner J. S., Doak P. B., Merrill J. P. Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest. 1966 Nov;45(11):1719–1731. doi: 10.1172/JCI105478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lefebvre P. J., Luyckx A. S., Nizet H. Renal handling of endogenous glucagon in the dog: comparison with insulin. Metabolism. 1974 Aug;23(8):753–761. doi: 10.1016/0026-0495(74)90007-9. [DOI] [PubMed] [Google Scholar]
  18. Lindsey A., Santeusanio F., Braaten J., Faloona G. R., Unger R. H. Pancreatic alpha-cell function in trauma. JAMA. 1974 Feb 18;227(7):757–761. [PubMed] [Google Scholar]
  19. Lindsey C. A., Faloona G. R., Unger R. H. Plasma glucagon in nonketotic hyperosmolar coma. JAMA. 1974 Sep 23;229(13):1771–1773. [PubMed] [Google Scholar]
  20. Lowrie E. G., Soeldner J. S., Hampers C. L., Merrill J. P. Glucose metabolism and insulin secretion in uremic, prediabetic, and normal subjects. J Lab Clin Med. 1970 Oct;76(4):603–615. [PubMed] [Google Scholar]
  21. Müller W. A., Faloona G. R., Unger R. H. Hyperglucagonemia in diabetic ketoacidosis. Its prevalence and significance. Am J Med. 1973 Jan;54(1):52–57. doi: 10.1016/0002-9343(73)90083-1. [DOI] [PubMed] [Google Scholar]
  22. SALISBURY P. F., DUNN M. S., MURPHY E. A. Apparent free amino acids in deproteinized plasma of normal and uremic persons. J Clin Invest. 1957 Aug;36(8):1227–1232. doi: 10.1172/JCI103519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spitz I. M., Rubenstein A. H., Bersohn I., Abrahams C., Lowy C. Carbohydrate metabolism in renal disease. Q J Med. 1970 Apr;39(154):201–226. [PubMed] [Google Scholar]
  24. Spitz I., Rubenstein A. H., Bersohn I., Lawrence A. M., Kirsteins L. The effect of dialysis on the carbohydrate intolerance of chronic renal failure. Horm Metab Res. 1970 Mar;2(2):86–93. doi: 10.1055/s-0028-1095114. [DOI] [PubMed] [Google Scholar]
  25. Swendseid M. E., Tuttle S. G., Figueroa W. S., Mulcare D., Clark A. J., Massey F. J. Plasma amino acid levels of men fed diets differing in protein content. Some observations with valine-deficient diets. J Nutr. 1966 Feb;88(2):239–248. doi: 10.1093/jn/88.2.239. [DOI] [PubMed] [Google Scholar]
  26. Swenson R. S., Peterson D. T., Eshleman M., Reaven G. M. Effect of acute uremia on various aspects of carbohydrate metabolism in dogs. Kidney Int. 1973 Oct;4(4):267–272. doi: 10.1038/ki.1973.113. [DOI] [PubMed] [Google Scholar]
  27. TAIT J. F. REVIEW: THE USE OF ISOTOPIC STEROIDS FOR THE MEASUREMENT OF PRODUCTION RATES IN VIVO. J Clin Endocrinol Metab. 1963 Dec;23:1285–1297. doi: 10.1210/jcem-23-12-1285. [DOI] [PubMed] [Google Scholar]
  28. Westervelt F. B. Insulin effect in uremia. J Lab Clin Med. 1969 Jul;74(1):79–84. [PubMed] [Google Scholar]
  29. Willerson J. T., Hutcheson D. R., Leshin S. J., Faloona G. R., Unger R. H. Serum glucagon and insulin levels and their relationship to blood glucose values in patients with acute myocardial infarction and acute coronary insufficiency. Am J Med. 1974 Nov;57(5):747–752. doi: 10.1016/0002-9343(74)90848-1. [DOI] [PubMed] [Google Scholar]
  30. Wise J. K., Hendler R., Felig P. Evaluation of alpha-cell function by infusion of alanine in normal, diabetic and obese subjects. N Engl J Med. 1973 Mar 8;288(10):487–490. doi: 10.1056/NEJM197303082881003. [DOI] [PubMed] [Google Scholar]
  31. Wise J. K., Hendler R., Felig P. Influence of glucocorticoids on glucagon secretion and plasma amino acid concentrations in man. J Clin Invest. 1973 Nov;52(11):2774–2782. doi: 10.1172/JCI107473. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES