Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Apr;57(4):811–817. doi: 10.1172/JCI108356

Determinants of lung bacterial clearance in normal mice.

S J Jay, W G Johanson Jr, A K Pierce, J S Reisch
PMCID: PMC436723  PMID: 7575

Abstract

The determinants of the lung clearance of Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus were studied in normal mice after exposure to an aerosol of viable bacteria and 99mTc-labeled dead bacteria. The fraction of bacteria in lungs that remained viable 4 h after exposure were: S. pneumoniae, 7.3%; K. pneumoniae, 121%; E. coli, 88.5%; S. aureus, 27.6%. The rate of physical removal of bacterial particles (Kmc) was determined from the change in lung 99mTc counts with time: Kmc ranged between 7 and 12%/h and and was similar in all species. The rate of mucociliary clearance and of intrapulmonary bacterial killing (Kk + Kmc) was calculated from the change in bacterial counts with time in animals that had received tetracycline to inhibit bacterial multiplication. Kk, the rate of intrapulmonary killing, was obtained by subtraction of Kmc from (Kk + Kmc). The calculated values for Kk were: S. pneumoniae, - 87%/h; K. pneumoniae, - 17%/h; E. coli, - 18%/h; S. aureus, - 22%/h. The rate of intrapulmonary bacterial multiplication (Kg) was estimated from the relationship of bacterial counts in tetracycline and nontetracycline-treated animals, assuming that tetracycline altered only Kg. Kg, expressed as the doubling time, was: S. pneumoniae, 310 min; K. pneumoniae, 217 min; E.coli, 212 min; S. aureus, infinity (no multiplication). The data indicate that the marked differences in the clearance of these species from the normal mouse lung result from the interaction of differing rates of in vivo bacterial multiplication and killing.

Full text

PDF
811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. W., Good R. A. Effect of antibiotics on the bactericidal activity of human leukocytes. J Lab Clin Med. 1968 Jun;71(6):971–983. [PubMed] [Google Scholar]
  2. BRAUDE A. I., FELTES J. Studies in the destruction of staphylococci by human leukocytes; effect of clumping of intracellular and extracellular bacteria on the results obtained with the agar-plate method. J Lab Clin Med. 1953 Aug;42(2):289–298. [PubMed] [Google Scholar]
  3. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493–496. [PubMed] [Google Scholar]
  4. GREEN G. M., KASS E. H. FACTORS INFLUENCING THE CLEARANCE OF BACTERIA BY THE LUNG. J Clin Invest. 1964 Apr;43:769–776. doi: 10.1172/JCI104961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GREEN G. M., KASS E. H. THE ROLE OF THE ALVEOLAR MACROPHAGE IN THE CLEARANCE OF BACTERIA FROM THE LUNG. J Exp Med. 1964 Jan 1;119:167–176. doi: 10.1084/jem.119.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldstein E., Green G. M. Alteration of the pathogenicity of Pasteurella pneumotropica for the murine lung caused by changes in pulmonary antibacterial activity. J Bacteriol. 1967 May;93(5):1651–1656. doi: 10.1128/jb.93.5.1651-1656.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Green G. M., Goldstein E. A method for quantitating intrapulmonary bacterial inactivation in individual animals. J Lab Clin Med. 1966 Oct;68(4):669–677. [PubMed] [Google Scholar]
  8. Green G. M., Kass E. H. The influence of bacterial species on pulmonary resistance to infection in mice subjected to hypoxia, cold stress, and ethanolic intoxication. Br J Exp Pathol. 1965 Jun;46(3):360–366. [PMC free article] [PubMed] [Google Scholar]
  9. Green L. H., Green G. M. Differential suppression of pulmonary antibacterial activity as the mechanism of selection of a pathogen in mixed bacterial infection of the lung. Am Rev Respir Dis. 1968 Nov;98(5):819–824. doi: 10.1164/arrd.1968.98.5.819. [DOI] [PubMed] [Google Scholar]
  10. Green L. H., Green G. M. Direct method for determining the viability of a freshly generated mixed bacterial aerosol. Appl Microbiol. 1968 Jan;16(1):78–81. doi: 10.1128/am.16.1.78-81.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson A. E., Southern P. M., Pierce A. K., Fallis B. D., Sanford J. P. Pulmonary clearance of gram-negative bacilli. J Lab Clin Med. 1967 May;69(5):833–841. [PubMed] [Google Scholar]
  12. Jakab G. J., Green G. M. Regional defense mechanisms of the guinea pig lung. Am Rev Respir Dis. 1973 May;107(5):776–783. doi: 10.1164/arrd.1973.107.5.776. [DOI] [PubMed] [Google Scholar]
  13. Johanson W. G., Jr, Kennedy M. G., Bonte F. J. Use of technetium ( 99m Tc) as a bacterial label in lung clearance studies. Appl Microbiol. 1973 Apr;25(4):592–594. doi: 10.1128/am.25.4.592-594.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johanson W. G., Jr, Stephen J. J., Pierce A. K. Bacterial growth in vivo. An important determinant of the pulmonary clearance of Diplococcus pneumoniae in rats. J Clin Invest. 1974 May;53(5):1320–1325. doi: 10.1172/JCI107679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LAURENZI G. A., BERMAN L., FIRST M., KASS E. H. A QUANTITATIVE STUDY OF THE DEPOSITION AND CLEARANCE OF BACTERIA IN THE MURINE LUNG. J Clin Invest. 1964 Apr;43:759–768. doi: 10.1172/JCI104960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LaForce F. M., Kelly W. J., Huber G. L. Inactivation of staphylococci by alveolar macrophages with preliminary observations on the importance of alveolar lining material. Am Rev Respir Dis. 1973 Oct;108(4):784–790. doi: 10.1164/arrd.1973.108.4.784. [DOI] [PubMed] [Google Scholar]
  17. Laurenzi G. A., Guarneri J. J. Effects of bacteria and viruses on ciliated epithelium. A study of the mechanisms of pulmonary resistance to infection: the relationship of bacterial clearance to ciliary and alveolar macrophage function. Am Rev Respir Dis. 1966 Mar;93(3 Suppl):134–141. doi: 10.1164/arrd.1966.93.3P2.134. [DOI] [PubMed] [Google Scholar]
  18. Levy P. S., Green G. M. A stochastic model of the bactericidal activity of the lung. J Theor Biol. 1968 Oct;21(1):103–112. doi: 10.1016/0022-5193(68)90063-5. [DOI] [PubMed] [Google Scholar]
  19. Mandell G. L. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest. 1973 Jul;52(7):1673–1679. doi: 10.1172/JCI107348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SUTER E. Interaction between phagocytes and pathogenic microorganisms. Bacteriol Rev. 1956 Jun;20(2):94–132. doi: 10.1128/br.20.2.94-132.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simon H. J., Yin E. J. Microbioassay of antimicrobial agents. Appl Microbiol. 1970 Apr;19(4):573–579. doi: 10.1128/am.19.4.573-579.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Southern P. M., Jr, Pierce A. K., Sanford J. P. Comparison of the pulmonary bactericidal capacity of mice and rats aganist strains of Pseudomonas aeruginosa. Appl Microbiol. 1971 Feb;21(2):377–378. [PMC free article] [PubMed] [Google Scholar]
  23. Southern P. M., Jr, Pierce A. K., Sanford J. P. Exposure chamber for 66 mice suitable for use with the henderson aerosol apparatus. Appl Microbiol. 1968 Mar;16(3):540–542. doi: 10.1128/am.16.3.540-542.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Southern P. M., Pierce A. K., Sanford J. P. Clearance of Serratia marcescens from Lungs of Normal Mice. Infect Immun. 1971 Jan;3(1):187–188. doi: 10.1128/iai.3.1.187-188.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steigbigel R. T., Lambert L. H., Jr, Remington J. S. Phagocytic and bacterial properties of normal human monocytes. J Clin Invest. 1974 Jan;53(1):131–142. doi: 10.1172/JCI107531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES