Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Apr;57(4):1025–1035. doi: 10.1172/JCI108344

Purine nucleoside metabolism in the erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency.

R P Agarwal, G W Crabtree, R E Parks Jr, J A Nelson, R Keightley, R Parkman, F S Rosen, R C Stern, S H Polmar
PMCID: PMC436746  PMID: 947948

Abstract

Deficiency of erythrocytic and lymphocytic adenosine deaminase (ADA) occurs in some patients with severe combined immunodeficiency disease (SCID). SCID with ADA deficiency is inherited as an autosomal recessive trait. ADA is markedly reduced or undetectable in affected patients (homozygotes), and approximately one-half normal levels are found in individuals heterozygous for ADA deficiency. The metabolism of purine nucleosides was studied in erythrocytes from normal individuals, four ADA-deficiency patients, and two heterozygous individuals. ADA deficiency in intake erythrocytes was confirmed by a very sensitive ammonia-liberation technique. Erythrocytic ADA activity in three heterozygous individuals (0.07,0.08, and 0.14 mumolar units/ml of packed cells) was between that of the four normal controls (0.20-0.37 mumol/ml) and the ADA-deficient patients (no activity). In vitro, adenosine was incorporated principally into IMP in the heterozygous and normal individuals but into the adenosine nucleotides in the ADa-deficient patients. Coformycin (3-beta-D-ribofuranosyl-6,7,8-trihydroimidazo[4,5-4] [1,3] diazepin-8 (R)-ol), a potent inhibitor of ADA, made possible incorporation of adenosine nucleotides in the ADA-deficient patients...

Full text

PDF
1025

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONOW L. Reversal of adenine toxicity by pyrimidine mucleosides. Biochim Biophys Acta. 1961 Feb 12;47:184–185. doi: 10.1016/0006-3002(61)90846-0. [DOI] [PubMed] [Google Scholar]
  2. Agarwal K. C., Parks R. E., Jr Adenosine triphosphate-guanosine 5'-phosphate phosphotransferase. IV. Isozymes in human erythrocytes and Sarcoma 180 ascites cells. Mol Pharmacol. 1972 Mar;8(2):128–138. [PubMed] [Google Scholar]
  3. Agarwal R. P., Parks R. E., Jr A possible association between the nucleoside transport system of human erythrocytes and adenosine deaminase. Biochem Pharmacol. 1975 Feb 15;24(4):547–550. doi: 10.1016/0006-2952(75)90146-x. [DOI] [PubMed] [Google Scholar]
  4. Agarwal R. P., Sagar S. M., Parks R. E., Jr Adenosine deaminase from human erythrocytes: purification and effects of adenosine analogs. Biochem Pharmacol. 1975 Mar 15;24(6):693–701. doi: 10.1016/0006-2952(75)90245-2. [DOI] [PubMed] [Google Scholar]
  5. Agarwal R. P., Scholar E. M., Agarwal K. C., Parks R. E., Jr Identification and isolation on a large scale of guanylate kinase from human erythrocytes. Effects of monophosphate nucleotides of purine analogs. Biochem Pharmacol. 1971 Jul;20(7):1341–1354. doi: 10.1016/0006-2952(71)90261-9. [DOI] [PubMed] [Google Scholar]
  6. Atkinson D. E. Regulation of enzyme function. Annu Rev Microbiol. 1969;23:47–68. doi: 10.1146/annurev.mi.23.100169.000403. [DOI] [PubMed] [Google Scholar]
  7. Brown P. R. The rapid separation of nucleotides in cell extracts using high-pressure liquid chromatography. J Chromatogr. 1970 Oct 21;52(2):257–272. doi: 10.1016/s0021-9673(01)96573-2. [DOI] [PubMed] [Google Scholar]
  8. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  9. Cha S., Agarwal R. P., Parks R. E., Jr Tight-binding inhibitors-II. Non-steady state nature of inhibition of milk xanthine oxidase by allopurinol and alloxanthine and of human erythrocytic adenosine deaminase by coformycin. Biochem Pharmacol. 1975 Dec 1;24(23):2187–2197. doi: 10.1016/0006-2952(75)90051-9. [DOI] [PubMed] [Google Scholar]
  10. Chen S. H., Scott R., Giblett E. R. Adenosine deaminase: demonstration of a "silent" gene associated with combined immunodeficiency disease. Am J Hum Genet. 1974 Jan;26(1):103–107. [PMC free article] [PubMed] [Google Scholar]
  11. Crabtree G. W., Henderson J. F. Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich ascites tumor cells in vitro. Cancer Res. 1971 Jul;31(7):985–991. [PubMed] [Google Scholar]
  12. Dissing J., Knudsen B. Adenosine-deaminase deficiency and combined immunodeficiency syndrome. Lancet. 1972 Dec 16;2(7790):1316–1316. doi: 10.1016/s0140-6736(72)92692-x. [DOI] [PubMed] [Google Scholar]
  13. Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
  14. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  15. Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
  16. Hirschhorn R., Beratis N., Rosen F. S., Parkman R., Stern R., Polmar S. Adenosine-deaminase deficiency in a child diagnosed prenatally. Lancet. 1975 Jan 11;1(7898):73–75. doi: 10.1016/s0140-6736(75)91075-2. [DOI] [PubMed] [Google Scholar]
  17. Hirschhorn R., Grossman J., Weissmann G. Effect of cyclic 3',5'-adenosine monophosphate and theophylline on lymphocyte transformation. Proc Soc Exp Biol Med. 1970 Apr;133(4):1361–1365. doi: 10.3181/00379727-133-34690. [DOI] [PubMed] [Google Scholar]
  18. Lomax C. A., Henderson J. F. Adenosine formation and metabolism during adenosine triphosphate catabolism in Ehrlich ascites tumor cells. Cancer Res. 1973 Nov;33(11):2825–2829. [PubMed] [Google Scholar]
  19. Meuwissen H. J., Pollara B., Pickering R. J. Combined immunodeficiency disease associated with adenosine deaminase deficiency. Report on a workshop held in Albany, New York, October 1, 1973. J Pediatr. 1975 Feb;86(2):169–181. doi: 10.1016/s0022-3476(75)80463-x. [DOI] [PubMed] [Google Scholar]
  20. Ochs H. D., Yount J. E., Giblett E. R., Chen S. H., Scott C. R., Wedgwood R. J. Adenosine-deaminase deficiency and severe combined immunodeficiency syndrome. Lancet. 1973 Jun 16;1(7816):1393–1394. doi: 10.1016/s0140-6736(73)91725-x. [DOI] [PubMed] [Google Scholar]
  21. Parkman R., Gelfand E. W., Rosen F. S., Sanderson A., Hirschhorn R. Severe combined immunodeficiency and adenosine deaminase deficiency. N Engl J Med. 1975 Apr 3;292(14):714–719. doi: 10.1056/NEJM197504032921402. [DOI] [PubMed] [Google Scholar]
  22. Parks R. E., Jr, Brown P. R. Incorporation of nucleosides into the nucleotide pools of human erythrocytes. Adenosine and its analogs. Biochemistry. 1973 Aug 14;12(17):3294–3302. doi: 10.1021/bi00741a022. [DOI] [PubMed] [Google Scholar]
  23. Parks R. E., Jr, Crabtree G. W., Kong C. M., Agarwal R. P., Agarwal K. C., Scholar E. M. Incorporation of analog purine nucleosides into the formed elements of human blood: erythrocytes, platelets, and lymphocytes. Ann N Y Acad Sci. 1975 Aug 8;255:412–434. doi: 10.1111/j.1749-6632.1975.tb29249.x. [DOI] [PubMed] [Google Scholar]
  24. Paterson A. R., Oliver J. M. Nucleoside transport. II. Inhibition by p-nitrobenzylthioguanosine and related compounds. Can J Biochem. 1971 Feb;49(2):271–274. doi: 10.1139/o71-039. [DOI] [PubMed] [Google Scholar]
  25. Polmar S. H., Wetzler E. M., Stern R. C., Hirschhorn R. Restoration of in-vitro lymphocyte responses with exogenous adenosine deaminase in a patient with severe combined immunodeficiency. Lancet. 1975 Oct 18;2(7938):743–746. doi: 10.1016/s0140-6736(75)90726-6. [DOI] [PubMed] [Google Scholar]
  26. Ramaiah A. Pasteur effect and phosphofructokinase. Curr Top Cell Regul. 1974;8(0):297–345. doi: 10.1016/b978-0-12-152808-9.50014-6. [DOI] [PubMed] [Google Scholar]
  27. SELIGSON D., SELIGSON H. A microdiffusion method for the determination of nitrogen liberated as ammonia. J Lab Clin Med. 1951 Aug;38(2):324–330. [PubMed] [Google Scholar]
  28. Sawa T., Fukagawa Y., Homma I., Takeuchi T., Umezawa H. Mode of inhibition of coformycin on adenosine deaminase. J Antibiot (Tokyo) 1967 Jul;20(4):227–231. [PubMed] [Google Scholar]
  29. Scholar E. M., Brown P. R., Parks R. E., Jr, Calabresi P. Nucleotide profiles of the formed elements of human blood determined by high-pressure liquid chromatography. Blood. 1973 Jun;41(6):927–936. [PubMed] [Google Scholar]
  30. Schrader J., Berne R. M., Rubio R. Uptake and metabolism of adenosine by human erythrocyte ghosts. Am J Physiol. 1972 Jul;223(1):159–166. doi: 10.1152/ajplegacy.1972.223.1.159. [DOI] [PubMed] [Google Scholar]
  31. Vanderheiden B. S. Phosphate esters of human erythrocytes. IV. Sedoheptulose-1,7-diphosphate, octulose-1,8-diphosphate, inosine triphosphate and uridine diphosphate. Biochem Biophys Res Commun. 1965 Nov 8;21(3):265–270. doi: 10.1016/0006-291x(65)90281-0. [DOI] [PubMed] [Google Scholar]
  32. Ward D. C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem. 1969 Mar 10;244(5):1228–1237. [PubMed] [Google Scholar]
  33. Wolberg G., Zimmerman T. P., Hiemstra K., Winston M., Chu L. C. Adenosine inhibition of lymphocyte-mediated cytolysis: possible role of cyclic adenosine monophosphate. Science. 1975 Mar 14;187(4180):957–959. doi: 10.1126/science.167434. [DOI] [PubMed] [Google Scholar]
  34. Zimmerman T. P., Gersten N. B., Ross A. F., Miech R. P. Adenine as substrate for purine nucleoside phosphorylase. Can J Biochem. 1971 Sep;49(9):1050–1054. doi: 10.1139/o71-153. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES