Abstract
Arylsulfatase B from human eosinophils was purified free of contaminating proteins by gel filtration and sequential affinity chromatography on Affi-Gel Blue and zinc chelate Sepharose. 50 micrograms of the purified enzyme presented as a single stained band on alkaline disc gel electrophoresis. In both goats and rabbits, the purified enzyme elicited monospecific antisera that yielded single precipitation arcs on Ouchterlony analysis with a human eosinophil extract and the purified enzyme; the immunoprecipitation lines fused in a pattern of identity, providing immunochemical evidence for the homogeneity of the purified enzyme. On sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, a dominant lower molecular weight protein and three other bands with molecular weights approximately two, three, and four times that of the major protein band were resolved. The prominence of the less rapidly migrating protein bands increased relative to the major band if the enzyme was maintained under acidic conditions or was reacted with the cross-linking agent dimethyl suberimidate under alkaline conditions before SDS-polyacrylamide gel electrophoresis, supporting the conclusion that the enzyme consists of four subunits. Two stained bands were present on acid disc gel electrophoresis; they were composed of oligomeric forms of enzyme on analysis by SDS-polyacrylamide gel electrophoresis in a second dimension. A minimum molecular weight of 70,190 was determined from amino acid composition analysis for the tetrameric form of the enzyme. The specific functional activity of the purified arylsulfatase B was concentration and time dependent, compatible with its association or dissociation into subunit forms with differing specific activities. Factors that govern subunit interactions of arylsulfatase B, including local enzyme concentration and pH, provide mechanisms for regulating the enzymatic activity of this lysosomal hydrolase.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agogbua S. I., Wynn C. H. Purification and properties of arylsulphatase B of human liver. Biochem J. 1976 Feb 1;153(2):415–421. doi: 10.1042/bj1530415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmad A., Surolia A., Bachhawat B. K. Affinity chromatographic separation of arylsulfatase A and B using Cibacron Blue-Sepharose. Biochim Biophys Acta. 1977 Apr 12;481(2):542–548. doi: 10.1016/0005-2744(77)90286-8. [DOI] [PubMed] [Google Scholar]
- Banker G. A., Cotman C. W. Measurement of free electrophoretic mobility and retardation coefficient of protein-sodium dodecyl sulfate complexes by gel electrophoresis. A method to validate molecular weight estimates. J Biol Chem. 1972 Sep 25;247(18):5856–5861. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Curnutte J. T., Babior B. M. Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes. J Clin Invest. 1974 Jun;53(6):1662–1672. doi: 10.1172/JCI107717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunne C. P., Wood W. A. L-threonine dehydrase as a model of allosteric control involving ligand-induced oligomerization. Curr Top Cell Regul. 1975;9:65–101. doi: 10.1016/b978-0-12-152809-6.50010-x. [DOI] [PubMed] [Google Scholar]
- FERGUSON K. A. STARCH-GEL ELECTROPHORESIS--APPLICATION TO THE CLASSIFICATION OF PITUITARY PROTEINS AND POLYPEPTIDES. Metabolism. 1964 Oct;13:SUPPL–SUPPL1002. doi: 10.1016/s0026-0495(64)80018-4. [DOI] [PubMed] [Google Scholar]
- Farooqui A. A., Roy A. B. The sulphatase of ox liver. XX. The preparation of sulphatases B1alpha and B1beta. Biochim Biophys Acta. 1976 Dec 8;452(2):431–439. doi: 10.1016/0005-2744(76)90193-5. [DOI] [PubMed] [Google Scholar]
- Farooqui A. A. Sulfatases, sulfate esters and their metabolic disorders. Clin Chim Acta. 1980 Jan 31;100(3):285–299. doi: 10.1016/0009-8981(80)90278-8. [DOI] [PubMed] [Google Scholar]
- Gniot-Szulzycka J. Human placenta arylsulphatase B purification and separation into subfractions. Acta Biochim Pol. 1972;19(3):181–190. [PubMed] [Google Scholar]
- Goudswaard J., van der Donk J. A., Noordzij A., van Dam R. H., Vaerman J. P. Protein A reactivity of various mammalian immunoglobulins. Scand J Immunol. 1978;8(1):21–28. doi: 10.1111/j.1365-3083.1978.tb00492.x. [DOI] [PubMed] [Google Scholar]
- Grefrath S. P., Reynolds J. A. The molecular weight of the major glycoprotein from the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3913–3916. doi: 10.1073/pnas.71.10.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurganov B. I., Dorozhko A. K., Kagan Z. S., Yakovlev V. A. The theoretical analysis of kinetic behaviour of kinetic behaviour of "hysteretic" allosteric enzymes. III. Dissociating and associating enzyme systems in which the rate of installation of equilibrium between the oligomeric forms in comparable to that of enzymatic reaction. J Theor Biol. 1976 Aug 7;60(2):287–299. doi: 10.1016/0022-5193(76)90061-8. [DOI] [PubMed] [Google Scholar]
- Leach B. S., Collawn J. F., Jr, Fish W. W. Behavior of glycopolypeptides with empirical molecular weight estimation methods. 1. In sodium dodecyl sulfate. Biochemistry. 1980 Dec 9;19(25):5734–5741. doi: 10.1021/bi00566a011. [DOI] [PubMed] [Google Scholar]
- Lehtovaara P. Anomalous migration of leghaemoglobin on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Biochem J. 1978 Jan 1;169(1):251–253. doi: 10.1042/bj1690251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metcalfe D. D., Gadek J. E., Raphael G. D., Frank M. M., Kaplan A. P., Kaliner M. Human eosinophil adherence to serum-treated sepharose: granule-associated enzyme release and requirement for activation of the alternative complement pathway. J Immunol. 1977 Nov;119(5):1744–1750. [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Parmley R. T., Spicer S. S. Altered tissue eosinophils in Hodgkin's Disease. Exp Mol Pathol. 1975 Aug;23(1):70–82. doi: 10.1016/0014-4800(75)90007-6. [DOI] [PubMed] [Google Scholar]
- Porath J., Carlsson J., Olsson I., Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975 Dec 18;258(5536):598–599. doi: 10.1038/258598a0. [DOI] [PubMed] [Google Scholar]
- Shapira E., Nadler H. L. Purification and some properties of soluble human liver arylsulfatases. Arch Biochem Biophys. 1975 Sep;170(1):179–187. doi: 10.1016/0003-9861(75)90109-5. [DOI] [PubMed] [Google Scholar]
- TANAKA K. R., VALENTINE W. N., FREDRICKS R. E. Human leucocyte arylsulphatase activity. Br J Haematol. 1962 Jan;8:86–92. doi: 10.1111/j.1365-2141.1962.tb06498.x. [DOI] [PubMed] [Google Scholar]
- Wasserman S. I., Austen K. F. Arylsulfatase B of human lung. Isolation, characterization, and interaction with slow-reacting substance of anaphylaxis. J Clin Invest. 1976 Mar;57(3):738–744. doi: 10.1172/JCI108332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasserman S. I., Goetzl E. J., Austen K. F. Inactivation of slow reacting substance of anaphylaxis by human eosinophil arylsulfatase. J Immunol. 1975 Feb;114(2 Pt 1):645–649. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Weller P. F., Ottesen E. A., Goetzl E. J. Sequential alterations in the human eosinophil content of arylsulfatase B during therapy of Bancroftian filariasis. Clin Immunol Immunopathol. 1981 Jan;18(1):76–84. doi: 10.1016/0090-1229(81)90010-6. [DOI] [PubMed] [Google Scholar]
- Williams J. G., Gratzer W. B. Limitations of the detergent-polyacrylamide gel electrophoresis method for molecular weight determination of proteins. J Chromatogr. 1971 Apr 22;57(1):121–125. doi: 10.1016/0021-9673(71)80013-4. [DOI] [PubMed] [Google Scholar]
