Abstract
2-Methylthio-ADP and its radioactive analogue [beta-32P]2-methylthio-ADP were synthesized and used to investigate platelet receptors for ADP. 2-Methylthio-ADP induced platelet aggregation and shape change, and inhibited cyclic AMP accumulation in platelets exposed to prostaglandin E1. Compared with ADP, 2-methylthio-ADP was 3-5 times as active as an aggregating agent and 150-200 times as active as an inhibitor of cyclic AMP accumulation. Binding of [beta-32P]2-methylthio-ADP to platelets was measured after centrifuging them through silicone oil to separate platelets from their suspension medium. Binding was reversible, saturable, and specific, with between 400 and 1,200 sites/cell in different platelet preparations. There was no evidence for a second class of binding sites with different affinity. The second order association rate constant was approximately 3.5 X 10(6) M-1 S-1, and the first order dissociation rate was 0.024 s-1, both measured at 23 degrees C. The dissociation equilibrium constant (approximately 15 nM) was about three times higher than the concentration giving half-maximal inhibition of prostaglandin E1-stimulated cyclic AMP accumulation in platelet-rich plasma. Binding was inhibited by ADP (Ki = 3.5 microM), ATP (7 microM), 2-azido-ADP (0.12 microM), inosine diphosphate (IDP, 150 microM), guanosine diphosphate (GDP, 350 microM), and AMP (800 microM). Binding of 2-methylthio-ADP was also blocked by the non-cell-penetrating thiol reagent, p-mercuribenzene sulphonate, a reagent that blocks the inhibition of adenylate cyclase by ADP, but which does not block the ability of ADP to induce aggregation or platelet shape change. The amount of 2-methylthio-ADP bound at saturation was independent of pH in the range 6-8, but the affinity was reduced at pH 6 compared with pH 6.5-8.0. The dissociation constant was not temperature dependent in the range 32 degrees -40 degrees C, whereas the rate of dissociation of 2-methylthio-ADP from platelets after the addition of an excess of ADP approximately doubled over this range. The activation energy for dissociation was approximately 15 kcal/mol. Our results support the conclusion that platelets have a receptor for ADP, which inhibits cyclic AMP accumulation, and which has a sulphydryl group in the binding pocket.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Born G. V., Feinberg H. Binding of adenosine diphosphate to intact human platelets. J Physiol. 1975 Oct;251(3):803–816. doi: 10.1113/jphysiol.1975.sp011123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper D. M., Rodbell M. ADP is a potent inhibitor of human platelet plasma membrane adenylate cyclase. Nature. 1979 Nov 29;282(5738):517–518. doi: 10.1038/282517a0. [DOI] [PubMed] [Google Scholar]
- Gough G., Maguire M. H., Penglis F. Analogues of adenosine 5'-diphosphate-new platelet aggregators. Influence of purine ring and and phosphate chain substitutions on the platelet-aggregating potency of adenosine 5'-diphosphate. Mol Pharmacol. 1972 Mar;8(2):170–177. [PubMed] [Google Scholar]
- Macfarlane D. E. Bidirectional collision coupling in the regulation of the adenylate cyclase. The allozyme hypothesis for receptor function. Mol Pharmacol. 1982 Nov;22(3):580–588. [PubMed] [Google Scholar]
- Macfarlane D. E., Mills D. C. Inhibition by ADP of prostaglandin induced accumulation of cyclic AMP in intact human platelets. J Cyclic Nucleotide Res. 1981;7(1):1–11. [PubMed] [Google Scholar]
- Macfarlane D. E., Mills D. C., Srivastava P. C. Binding of 2-azidoadenosine [beta-32P]diphosphate to the receptor on intact human blood platelets which inhibits adenylate cyclase. Biochemistry. 1982 Feb 2;21(3):544–549. doi: 10.1021/bi00532a020. [DOI] [PubMed] [Google Scholar]
- Macfarlane D. E., Mills D. C. The effects of ATP on platelets: evidence against the central role of released ADP in primary aggregation. Blood. 1975 Sep;46(3):309–320. [PubMed] [Google Scholar]
- Macfarlane D. E., Stump D. C. Parallel observation of the occupancy of the alpha 2-adrenergic receptor in intact platelets and its ability to inhibit the adenylate cyclase. Mol Pharmacol. 1982 Nov;22(3):574–579. [PubMed] [Google Scholar]
- Macfarlane D. E., Wright B. L., Stump D. C. Use of [methyl-3H]Yohimbine as a radioligand for alpha-2 adrenoreceptors on intact platelets. Comparison with dihydroergocryptine. Thromb Res. 1981 Oct 1;24(1-2):31–43. doi: 10.1016/0049-3848(81)90029-3. [DOI] [PubMed] [Google Scholar]
- Mustard J. F., Packham M. A., Perry D. W., Guccione M. A., Kinlough-Rathbone R. L. Enzyme activities on the platelet surface in relation to the action of adenosine diphosphate. Ciba Found Symp. 1975;35:47–75. doi: 10.1002/9780470720172.ch4. [DOI] [PubMed] [Google Scholar]
- Walsh P. N., Mills D. C., White J. G. Metabolism and function of human platelets washed by albumin density gradient separation. Br J Haematol. 1977 Jun;36(2):287–296. doi: 10.1111/j.1365-2141.1977.tb00649.x. [DOI] [PubMed] [Google Scholar]