Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Mar;71(3):518–524. doi: 10.1172/JCI110796

Trifluoperazine Inhibits the Contraction of Cultured Rat Cardiac Cells and the Phosphorylation of Myosin Light Chain

Irwin Klein 1
PMCID: PMC436899  PMID: 6826721

Abstract

Cultured, spontaneously beating heart cells were used to study the role of calmodulin in regulating cardiac contraction. Trifluoperazine (TFP), an antipsychotic drug that binds to calmodulin, reversibly inhibited myocardial contraction. This effect occurred over a TFP concentration range of 5-100 μM with half maximal activity at ∼15 μM TFP. When the phosphoprotein profile of TFP-treated cells was compared with control cultures, there was a significant decrease in 32P content of the 20,000-D myosin light chain. As measured by two-dimensional gel electrophoresis, the fraction of phosphorylated myosin light chain decreased from 0.31±0.06 in control to 0.16±0.05 in TFP-treated cells (P < 0.05). This inhibition of protein phosphorylation was relatively selective, as two other phosphoproteins (∼ 41,000 and 36,000 D) were unaffected, and a third protein (∼ 28,000 D) showed an increase in 32P activity. In contrast, the cessation of spontaneous beating by 50 mM KCl did not reproduce these changes. This inhibition of contraction mediated by TFP associated with alterations in the phosphorylation of certain cardiac phosphoproteins suggests a role for calmodulin and for the myosin light chain in the regulation of cardiac cell contraction.

Full text

PDF
518

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Schwartz A. Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest. 1980 Jul;78(1 Suppl):123–139. doi: 10.1378/chest.78.1_supplement.123. [DOI] [PubMed] [Google Scholar]
  2. Adelstein R. S. Phosphorylation of muscle contractile proteins: Introduction. Fed Proc. 1980 Apr;39(5):1544–1546. [PubMed] [Google Scholar]
  3. Barron J. T., Bárány M., Bárány K., Storti R. V. Reversible phosphorylation and dephosphorylation of the 20,000-dalton light chain of myosin during the contraction-relaxation-contraction cycle of arterial smooth muscle. J Biol Chem. 1980 Jul 10;255(13):6238–6244. [PubMed] [Google Scholar]
  4. Barry W. H., Smith T. W. Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells. J Physiol. 1982 Apr;325:243–260. doi: 10.1113/jphysiol.1982.sp014148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bárány K., Vander Meulen D. L., Ledvora R. F., Bárány M. Selective phosphorylation of myosin light chain in intact skeletal muscle. Arch Biochem Biophys. 1982 Aug;217(1):392–396. doi: 10.1016/0003-9861(82)90516-1. [DOI] [PubMed] [Google Scholar]
  6. Conti M. A., Adelstein R. S. Phosphorylation by cyclic adenosine 3':5'-monophosphate-dependent protein kinase regulates myosin light chain kinase. Fed Proc. 1980 Apr;39(5):1569–1573. [PubMed] [Google Scholar]
  7. DiSalvo J., Gruenstein E., Silver P. Ca2+ dependent phosphorylation of bovine aortic actomyosin. Proc Soc Exp Biol Med. 1978 Jul;158(3):410–414. doi: 10.3181/00379727-158-40215. [DOI] [PubMed] [Google Scholar]
  8. Ebashi S. Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system. Essays Biochem. 1974;10:1–36. [PubMed] [Google Scholar]
  9. England P. J. Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart. FEBS Lett. 1975 Jan 15;50(1):57–60. doi: 10.1016/0014-5793(75)81040-4. [DOI] [PubMed] [Google Scholar]
  10. Frearson N., Solaro R. J., Perry S. V. Changes in phosphorylation of P light chain of myosin in perfused rabbit heart. Nature. 1976 Dec 23;264(5588):801–802. doi: 10.1038/264801a0. [DOI] [PubMed] [Google Scholar]
  11. HARARY I., FARLEY B. In vitro studies of single isolated beating heart cells. Science. 1960 Jun 3;131(3414):1674–1675. doi: 10.1126/science.131.3414.1674. [DOI] [PubMed] [Google Scholar]
  12. Hidaka H., Yamaki T., Totsuka T., Asano M. Selective inhibitors of Ca2+-binding modulator of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction. Mol Pharmacol. 1979 Jan;15(1):49–59. [PubMed] [Google Scholar]
  13. Holroyde M. J., Small D. A., Howe E., Solaro R. J. Isolation of cardiac myofibrils and myosin light chains with in vivo levels of light chain phosphorylation. Biochim Biophys Acta. 1979 Nov 1;587(4):628–637. doi: 10.1016/0304-4165(79)90014-x. [DOI] [PubMed] [Google Scholar]
  14. Kerrick W. G., Hoar P. E., Cassidy P. S. Calcium-activated tension: the role of myosin light chain phosphorylation. Fed Proc. 1980 Apr;39(5):1558–1563. [PubMed] [Google Scholar]
  15. Klein I., Levey J. S., Gondek M. Characterization of the phosphoprotein profile in spontaneously beating cultured rat heart cells. Proc Soc Exp Biol Med. 1982 May;170(1):19–24. doi: 10.3181/00379727-170-41389. [DOI] [PubMed] [Google Scholar]
  16. Klein I., Willingham M., Pastan I. A high molecular weight phosphoprotein in cultured fibroblasts that associates with polymerized tubulin. Exp Cell Res. 1978 Jun;114(1):229–238. doi: 10.1016/0014-4827(78)90056-3. [DOI] [PubMed] [Google Scholar]
  17. Lincoln T. M., Corbin J. D. Purified cyclic GMP-dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN-1). J Biol Chem. 1978 Jan 25;253(2):337–339. [PubMed] [Google Scholar]
  18. Norwood C. R., Castaneda A. R., Norwood W. I. Heterogeneity of rat cardiac cells of defined origin in single cell culture. J Mol Cell Cardiol. 1980 Feb;12(2):201–210. doi: 10.1016/0022-2828(80)90089-9. [DOI] [PubMed] [Google Scholar]
  19. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  20. Perry S. V. The regulation of contractile activity in muscle. Biochem Soc Trans. 1979 Aug;7(4):593–617. doi: 10.1042/bst0070593. [DOI] [PubMed] [Google Scholar]
  21. Ray K. P., England P. J. Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase. FEBS Lett. 1976 Nov;70(1):11–16. doi: 10.1016/0014-5793(76)80716-8. [DOI] [PubMed] [Google Scholar]
  22. Resink T. J., Gevers W., Noakes T. D., Opie L. H. Increased cardiac myosin ATPase activity as a biochemical adaptation to running training: enhanced response to catecholamines and a role for myosin phosphorylation. J Mol Cell Cardiol. 1981 Jul;13(7):679–694. doi: 10.1016/0022-2828(81)90275-3. [DOI] [PubMed] [Google Scholar]
  23. Sheterline P. Trifluoperazine can distinguish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Ca++. Biochem Biophys Res Commun. 1980 Mar 13;93(1):194–200. doi: 10.1016/s0006-291x(80)80265-8. [DOI] [PubMed] [Google Scholar]
  24. Shiverick K. T., Thomas L. L., Alpert N. R. Purification of cardiac myosin. Application to hypertrophied myocardium. Biochim Biophys Acta. 1975 May 30;393(1):124–133. doi: 10.1016/0005-2795(75)90222-6. [DOI] [PubMed] [Google Scholar]
  25. Stull J. T., Manning D. R., High C. W., Blumenthal D. K. Phosphorylation of contractile proteins in heart and skeletal muscle. Fed Proc. 1980 Apr;39(5):1552–1557. [PubMed] [Google Scholar]
  26. Stull J. T. Phosphorylation of contractile proteins in relation to muscle function. Adv Cyclic Nucleotide Res. 1980;13:39–93. [PubMed] [Google Scholar]
  27. Walsh M. P., Le Peuch C. J., Vallet B., Cavadore J. C., Demaille J. G. Cardiac calmodulin and its role in the regulation of metabolism and contraction. J Mol Cell Cardiol. 1980 Oct;12(10):1091–1101. doi: 10.1016/0022-2828(80)90034-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES