Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Mar;71(3):775–779. doi: 10.1172/JCI110826

Direct detection of the common Mediterranean beta-thalassemia gene with synthetic DNA probes. An alternative approach for prenatal diagnosis.

S H Orkin, A F Markham, H H Kazazian Jr
PMCID: PMC436929  PMID: 6826735

Abstract

The most common form of beta-thalassemia among Mediterraneans results from a single nucleotide substitution within the first intervening sequence (IVS-1) of the beta-globin gene. This particular mutation is not detectable in uncloned DNA by restriction enzyme analysis. Using synthetic DNA of 19-nucleotides in length corresponding to the normal and mutant IVS-1 sequences as probes, we have developed a direct assay for this gene defect. Under carefully controlled experimental conditions these synthetic probes detect only their homologous sequences in restriction digests of both cloned and uncloned DNA samples. The method is sufficiently sensitive to establish the genotype of individuals with respect to this defect using approximately 20 micrograms total DNA. This assay provides an alternative to fetal blood and DNA linkage analysis for the prenatal diagnosis of this variety of beta-thalassemia, particularly among Greek families where it is especially common.

Full text

PDF
775

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter B. P. Prenatal diagnosis of haemoglobinopathies: A status report. Lancet. 1981 Nov 21;2(8256):1152–1155. doi: 10.1016/s0140-6736(81)90598-5. [DOI] [PubMed] [Google Scholar]
  2. Antonarakis S. E., Boehm C. D., Giardina P. J., Kazazian H. H., Jr Nonrandom association of polymorphic restriction sites in the beta-globin gene cluster. Proc Natl Acad Sci U S A. 1982 Jan;79(1):137–141. doi: 10.1073/pnas.79.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busslinger M., Moschonas N., Flavell R. A. Beta + thalassemia: aberrant splicing results from a single point mutation in an intron. Cell. 1981 Dec;27(2 Pt 1):289–298. doi: 10.1016/0092-8674(81)90412-8. [DOI] [PubMed] [Google Scholar]
  4. Chang J. C., Kan Y. W. A sensitive new prenatal test for sickle-cell anemia. N Engl J Med. 1982 Jul 1;307(1):30–32. doi: 10.1056/NEJM198207013070105. [DOI] [PubMed] [Google Scholar]
  5. Conner B. J., Reyes A. A., Morin C., Itakura K., Teplitz R. L., Wallace R. B. Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci U S A. 1983 Jan;80(1):278–282. doi: 10.1073/pnas.80.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  7. Fukumaki Y., Ghosh P. K., Benz E. J., Jr, Reddy V. B., Lebowitz P., Forget B. G., Weissman S. M. Abnormally spliced messenger RNA in erythroid cells from patients with beta+ thalassemia and monkey cells expressing a cloned beta+-thalassemic gene. Cell. 1982 Mar;28(3):585–593. doi: 10.1016/0092-8674(82)90213-6. [DOI] [PubMed] [Google Scholar]
  8. Kan Y. W., Dozy A. M. Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5631–5635. doi: 10.1073/pnas.75.11.5631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kazazian H. H., Jr, Phillips J. A., 3rd, Boehm C. D., Vik T. A., Mahoney M. J., Ritchey A. K. Prenatal diagnosis of beta-thalassemias by amniocentesis: linkage analysis using multiple polymorphic restriction endonuclease sites. Blood. 1980 Nov;56(5):926–930. [PubMed] [Google Scholar]
  10. Lawn R. M., Efstratiadis A., O'Connell C., Maniatis T. The nucleotide sequence of the human beta-globin gene. Cell. 1980 Oct;21(3):647–651. doi: 10.1016/0092-8674(80)90428-6. [DOI] [PubMed] [Google Scholar]
  11. Ley T. J., Anagnou N. P., Pepe G., Nienhuis A. W. RNA processing errors in patients with beta-thalassemia. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4775–4779. doi: 10.1073/pnas.79.15.4775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Markham A. F., Edge M. D., Atkinson T. C., Greene A. R., Heathcliffe G. R., Newton C. R., Scanlon D. Solid phase phosphotriester synthesis of large oligodeoxyribonucleotides on a polyamide support. Nucleic Acids Res. 1980 Nov 25;8(22):5193–5205. doi: 10.1093/nar/8.22.5193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Orkin S. H., Alter B. P., Altay C., Mahoney M. J., Lazarus H., Hobbins J. C., Nathan D. G. Application of endonuclease mapping to the analysis and prenatal diagnosis of thalassemias caused by globin-gene deletion. N Engl J Med. 1978 Jul 27;299(4):166–172. doi: 10.1056/NEJM197807272990403. [DOI] [PubMed] [Google Scholar]
  14. Orkin S. H., Kazazian H. H., Jr, Antonarakis S. E., Goff S. C., Boehm C. D., Sexton J. P., Waber P. G., Giardina P. J. Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. Nature. 1982 Apr 15;296(5858):627–631. doi: 10.1038/296627a0. [DOI] [PubMed] [Google Scholar]
  15. Orkin S. H., Little P. F., Kazazian H. H., Jr, Boehm C. D. Improved detection of the sickle mutation by DNA analysis: application to prenatal diagnosis. N Engl J Med. 1982 Jul 1;307(1):32–36. doi: 10.1056/NEJM198207013070106. [DOI] [PubMed] [Google Scholar]
  16. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  17. Spritz R. A., Jagadeeswaran P., Choudary P. V., Biro P. A., Elder J. T., deRiel J. K., Manley J. L., Gefter M. L., Forget B. G., Weissman S. M. Base substitution in an intervening sequence of a beta+-thalassemic human globin gene. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2455–2459. doi: 10.1073/pnas.78.4.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wallace R. B., Schold M., Johnson M. J., Dembek P., Itakura K. Oligonucleotide directed mutagenesis of the human beta-globin gene: a general method for producing specific point mutations in cloned DNA. Nucleic Acids Res. 1981 Aug 11;9(15):3647–3656. doi: 10.1093/nar/9.15.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Westaway D., Williamson R. An intron nucleotide sequence variant in a cloned beta +-thalassaemia globin gene. Nucleic Acids Res. 1981 Apr 24;9(8):1777–1788. doi: 10.1093/nar/9.8.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Williamson R., Eskdale J., Coleman D. V., Niazi M., Loeffler F. E., Modell B. M. Direct gene analysis of chorionic villi: A possible technique for first-trimester antenatal diagnosis of haemoglobinopathies. Lancet. 1981 Nov 21;2(8256):1125–1127. doi: 10.1016/s0140-6736(81)90583-3. [DOI] [PubMed] [Google Scholar]
  21. Wilson J. T., Milner P. F., Summer M. E., Nallaseth F. S., Fadel H. E., Reindollar R. H., McDonough P. G., Wilson L. B. Use of restriction endonucleases for mapping the allele for beta s-globin. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3628–3631. doi: 10.1073/pnas.79.11.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES