Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Apr 26;91(9):3916–3920. doi: 10.1073/pnas.91.9.3916

Timely immunization subverts the development of peripheral nonresponsiveness and suppresses tumor development in simian virus 40 tumor antigen-transgenic mice.

X Ye 1, J McCarrick 1, L Jewett 1, B B Knowles 1
PMCID: PMC43693  PMID: 8171012

Abstract

Tolerance to tumor cell-expressed molecules and selection of cells that evade immune surveillance during tumor progression create effective barriers to immunotherapy. We investigated the cytotoxic T-lymphocyte response to simian virus 40 (SV40) tumor (T/t) antigen in two lineages of transgenic mice bearing the same rat insulin promoter-SV40 T/t antigen (RIP Tag) hybrid gene. RIP1-Tag2 mice, which express Tag as embryos, are tolerant to Tag, whereas RIP1-Tag4 mice, which express the transgene in pancreatic islet beta cells several weeks after birth and develop insulinomas, can be immunized to generate active Tag-specific cytotoxic T lymphocytes as determined by in vitro assays. Indeed, RIP1-Tag4 mice immunized with Tag by SV40 infection prior to the time of endogenous transgene expression also mount an effective in vivo cellular immune response to the Tag-expressing pancreatic beta cells, and Tag-induced tumor growth is significantly delayed (up to 1 year). However, after the transgene is expressed, RIP1-Tag4 mice are unable to mount a tumor-inhibiting response upon immunization, although Tag-specific cytotoxic T cells can still be demonstrated in vitro. Our data suggest that Tag-specific T cells are rendered unresponsive in vivo in RIP1-Tag4 mice and that the establishment of this unresponsiveness to Tag can be prevented by SV40 immunization only before the onset of the transgene expression. In the older, successfully immunized mouse, decreased immune surveillance and selection of cells with down-regulation of major histocompatibility complex class I expression most likely set the stage for insulinoma development.

Full text

PDF
3916

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramczuk J., Pan S., Maul G., Knowles B. B. Tumor induction by simian virus 40 in mice is controlled by long-term persistence of the viral genome and the immune response of the host. J Virol. 1984 Feb;49(2):540–548. doi: 10.1128/jvi.49.2.540-548.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams T. E., Alpert S., Hanahan D. Non-tolerance and autoantibodies to a transgenic self antigen expressed in pancreatic beta cells. Nature. 1987 Jan 15;325(6101):223–228. doi: 10.1038/325223a0. [DOI] [PubMed] [Google Scholar]
  3. Alpert S., Hanahan D., Teitelman G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell. 1988 Apr 22;53(2):295–308. doi: 10.1016/0092-8674(88)90391-1. [DOI] [PubMed] [Google Scholar]
  4. Böhme J., Haskins K., Stecha P., van Ewijk W., LeMeur M., Gerlinger P., Benoist C., Mathis D. Transgenic mice with I-A on islet cells are normoglycemic but immunologically intolerant. Science. 1989 Jun 9;244(4909):1179–1183. doi: 10.1126/science.2499048. [DOI] [PubMed] [Google Scholar]
  5. Faas S. J., Pan S., Pinkert C. A., Brinster R. L., Knowles B. B. Simian virus 40 (SV40)-transgenic mice that develop tumors are specifically tolerant to SV40 T antigen. J Exp Med. 1987 Feb 1;165(2):417–427. doi: 10.1084/jem.165.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faas S. J., Rothstein J. L., Kreider B. L., Rovera G., Knowles B. B. Phenotypically diverse mouse thymic stromal cell lines which induce proliferation and differentiation of hematopoietic cells. Eur J Immunol. 1993 Jun;23(6):1201–1214. doi: 10.1002/eji.1830230602. [DOI] [PubMed] [Google Scholar]
  7. Gilligan A., Jewett L., Simon D., Damjanov I., Matschinsky F. M., Weik H., Pinkert C., Knowles B. B. Functional pancreatic beta-cell line from SV40 T-antigen transgenic mouse. Diabetes. 1989 Aug;38(8):1056–1062. doi: 10.2337/diab.38.8.1056. [DOI] [PubMed] [Google Scholar]
  8. Götz J., Eibel H., Köhler G. Non-tolerance and differential susceptibility to diabetes in transgenic mice expressing major histocompatibility class II genes on pancreatic beta cells. Eur J Immunol. 1990 Aug;20(8):1677–1683. doi: 10.1002/eji.1830200809. [DOI] [PubMed] [Google Scholar]
  9. Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985 May 9;315(6015):115–122. doi: 10.1038/315115a0. [DOI] [PubMed] [Google Scholar]
  10. Hanahan D., Jolicoeur C., Alpert S., Skowronski J. Alternative self or nonself recognition of an antigen expressed in a rare cell type in transgenic mice: implications for self-tolerance and autoimmunity. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 2):821–835. doi: 10.1101/sqb.1989.054.01.096. [DOI] [PubMed] [Google Scholar]
  11. Heath W. R., Allison J., Hoffmann M. W., Schönrich G., Hämmerling G., Arnold B., Miller J. F. Autoimmune diabetes as a consequence of locally produced interleukin-2. Nature. 1992 Oct 8;359(6395):547–549. doi: 10.1038/359547a0. [DOI] [PubMed] [Google Scholar]
  12. Jones B., Janeway C. A., Jr Cooperative interaction of B lymphocytes with antigen-specific helper T lymphocytes is MHC restricted. Nature. 1981 Aug 6;292(5823):547–549. doi: 10.1038/292547a0. [DOI] [PubMed] [Google Scholar]
  13. June C. H., Ledbetter J. A., Linsley P. S., Thompson C. B. Role of the CD28 receptor in T-cell activation. Immunol Today. 1990 Jun;11(6):211–216. doi: 10.1016/0167-5699(90)90085-n. [DOI] [PubMed] [Google Scholar]
  14. Juretic A., Knowles B. B. Frequency of SV40-specific cytotoxic T-lymphocyte precursors in two SV40 T-antigen transgenic mouse lines. APMIS. 1991 Mar;99(3):213–218. doi: 10.1111/j.1699-0463.1991.tb05141.x. [DOI] [PubMed] [Google Scholar]
  15. Knowles B. B., Koncar M., Pfizenmaier K., Solter D., Aden D. P., Trinchieri G. Genetic control of the cytotoxic T cell response to SV40 tumor-associated specific antigen. J Immunol. 1979 May;122(5):1798–1806. [PubMed] [Google Scholar]
  16. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  17. Markmann J., Lo D., Naji A., Palmiter R. D., Brinster R. L., Heber-Katz E. Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature. 1988 Dec 1;336(6198):476–479. doi: 10.1038/336476a0. [DOI] [PubMed] [Google Scholar]
  18. Miller J. F., Morahan G., Allison J. Extrathymic acquisition of tolerance by T lymphocytes. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 2):807–813. doi: 10.1101/sqb.1989.054.01.094. [DOI] [PubMed] [Google Scholar]
  19. Miller J., Daitch L., Rath S., Selsing E. Tissue-specific expression of allogeneic class II MHC molecules induces neither tissue rejection nor clonal inactivation of alloreactive T cells. J Immunol. 1990 Jan 1;144(1):334–341. [PubMed] [Google Scholar]
  20. Morahan G., Allison J., Miller J. F. Tolerance of class I histocompatibility antigens expressed extrathymically. Nature. 1989 Jun 22;339(6226):622–624. doi: 10.1038/339622a0. [DOI] [PubMed] [Google Scholar]
  21. Ohashi P. S., Oehen S., Buerki K., Pircher H., Ohashi C. T., Odermatt B., Malissen B., Zinkernagel R. M., Hengartner H. Ablation of "tolerance" and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. 1991 Apr 19;65(2):305–317. doi: 10.1016/0092-8674(91)90164-t. [DOI] [PubMed] [Google Scholar]
  22. Oldstone M. B., Nerenberg M., Southern P., Price J., Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991 Apr 19;65(2):319–331. doi: 10.1016/0092-8674(91)90165-u. [DOI] [PubMed] [Google Scholar]
  23. Pan S., Abramczuk J., Knowles B. B. Immune control of SV40-induced tumors in mice. Int J Cancer. 1987 Jun 15;39(6):722–728. doi: 10.1002/ijc.2910390612. [DOI] [PubMed] [Google Scholar]
  24. Pipeleers D. G., in't Veld P. A., Van de Winkel M., Maes E., Schuit F. C., Gepts W. A new in vitro model for the study of pancreatic A and B cells. Endocrinology. 1985 Sep;117(3):806–816. doi: 10.1210/endo-117-3-806. [DOI] [PubMed] [Google Scholar]
  25. Ramsdell F., Fowlkes B. J. Maintenance of in vivo tolerance by persistence of antigen. Science. 1992 Aug 21;257(5073):1130–1134. doi: 10.1126/science.257.5073.1130. [DOI] [PubMed] [Google Scholar]
  26. Rocha B., von Boehmer H. Peripheral selection of the T cell repertoire. Science. 1991 Mar 8;251(4998):1225–1228. doi: 10.1126/science.1900951. [DOI] [PubMed] [Google Scholar]
  27. Rothstein J. L., Johnson D., DeLoia J. A., Skowronski J., Solter D., Knowles B. Gene expression during preimplantation mouse development. Genes Dev. 1992 Jul;6(7):1190–1201. doi: 10.1101/gad.6.7.1190. [DOI] [PubMed] [Google Scholar]
  28. Sarvetnick N., Shizuru J., Liggitt D., Martin L., McIntyre B., Gregory A., Parslow T., Stewart T. Loss of pancreatic islet tolerance induced by beta-cell expression of interferon-gamma. Nature. 1990 Aug 30;346(6287):844–847. doi: 10.1038/346844a0. [DOI] [PubMed] [Google Scholar]
  29. Trinchieri G., Aden D. P., Knowles B. B. Cell-mediated cytotoxicity to SV40-specific tumour-associated antigens. Nature. 1976 May 27;261(5558):312–314. doi: 10.1038/261312a0. [DOI] [PubMed] [Google Scholar]
  30. Webb S., Morris C., Sprent J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell. 1990 Dec 21;63(6):1249–1256. doi: 10.1016/0092-8674(90)90420-j. [DOI] [PubMed] [Google Scholar]
  31. Zijlstra M., Li E., Sajjadi F., Subramani S., Jaenisch R. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature. 1989 Nov 23;342(6248):435–438. doi: 10.1038/342435a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES