Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 May;71(5):1191–1205. doi: 10.1172/JCI110868

Lipoxygenase Pathway in Islet Endocrine Cells. OXIDATIVE METABOLISM OF ARACHIDONIC ACID PROMOTES INSULIN RELEASE

Stewart Metz 1,2,3,4,5, Michael VanRollins 1,2,3,4,5, Robert Strife 1,2,3,4,5, Wilfred Fujimoto 1,2,3,4,5, R Paul Robertson 1,2,3,4,5
PMCID: PMC436979  PMID: 6406544

Abstract

Metabolism of arachidonic acid (AA) via the cyclooxygenase pathway reduces glucose-stimulated insulin release. However, metabolism of AA by the lipoxygenase pathway and the consequent effects on insulin secretion have not been simultaneously assessed in the endocrine islet. Both dispersed endocrine cell-enriched pancreatic cells of the neonatal rat, as well as intact islets of the adult rat, metabolized [3H]AA not only to cyclooxygenase products (prostaglandins E2, F, and prostacyclin) but also to the lipoxygenase product 12-hydroxyeicosatetraenoic acid (12-HETE). 12-HETE was identified by coelution with authentic tritiated or unlabeled 12-HETE using four high performance liquid chromatographic systems under eight mobile-phase conditions and its identity was confirmed by gas chromatography/mass spectrometry using selected ion monitoring. The predominant effect of exogenous AA (5 μg/ml) was to stimulate insulin release from pancreatic cells grown in monolayer. This effect was concentration- and time-dependent, and reversible. The effect of AA upon insulin release was potentiated by a cyclooxygenase inhibitor (indomethacin) and was prevented by either of two lipoxygenase inhibitors (5,8,11,14-eicosatetraynoic acid [ETYA] and BW755c). In addition, glucose, as well as two structurally dissimilar agents (the calcium ionophore A23187 and bradykinin), which activate phospholipase(s) and thereby release endogenous AA in several cell systems, also stimulated insulin secretion. The effects of glucose, glucagon, bradykinin and high concentrations of A23187 (5 μg/ml) to augment insulin release were blocked or considerably reduced by lipoxygenase inhibitors. However, a lower concentration of the ionophore (0.25 μg/ml), which did not appear to activate phospholipase, was resistant to blockade. Exogenous 12-HETE (up to 2,000 ng/ml) did not alter glucose-induced insulin release. However, the labile intermediate 12-hydroperoxy-ETE increased insulin release. Furthermore, diethylmaleate (which binds intracellular glutathione and thereby impedes conversion of the lipoxygenase intermediates hydroperoxy-ETE and leukotriene A4 to HETE and leukotriene C4, respectively) potentiated the effect of glucose and of exogenous AA. Finally, 5,6-epoxy, 8,11,14-eicosatrienoic acid (a relatively stable epoxide analogue of leukotriene A4) as well as two other epoxy-analogues, potentiated glucose-induced insulin release. We conclude that dual pathways of AA metabolism exist in islet endocrine cells and have opposing regulatory effects on the beta cell—an inhibitory cyclooxygenase cascade and a stimulatory lipoxygenase cascade. Labile products of the latter pathway may play a pivotal role in stimulus-secretion coupling in the islet.

Full text

PDF
1191

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby J. P., Speake R. N. Insulin and glucagon secretion from isolated islets of Langerhans. The effects of calcium ionophores. Biochem J. 1975 Jul;150(1):89–96. [PMC free article] [PubMed] [Google Scholar]
  2. Bass D. A., O'Flaherty J. T., Szejda P., DeChatelet L. R., McCall C. E. Role of arachidonic acid in stimulation of hexose transport by human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5125–5129. doi: 10.1073/pnas.77.9.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Billah M. M., Lapetina E. G., Cuatrecasas P. Phospholipase A2 activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets. J Biol Chem. 1981 Jun 10;256(11):5399–5403. [PubMed] [Google Scholar]
  4. Bokoch G. M., Reed P. W. Effect of various lipoxygenase metabolites of arachidonic acid on degranulation of polymorphonuclear leukocytes. J Biol Chem. 1981 Jun 10;256(11):5317–5320. [PubMed] [Google Scholar]
  5. Bonser R. W., Chandrabose K. A., Cuatrecasas P. Thrombin and bradykinin modulate prostaglandin synthetase independently of phospholipase. Adv Prostaglandin Thromboxane Res. 1980;6:259–262. [PubMed] [Google Scholar]
  6. Borgeat P., Sirois P. Leukotrienes: a major step in the understanding of immediate hypersensitivity reactions. J Med Chem. 1981 Feb;24(2):121–126. doi: 10.1021/jm00134a001. [DOI] [PubMed] [Google Scholar]
  7. Brenner R. R., Peluffo R. O., Mercuri O., Restelli M. A. Effect of arachidonic acid in the alloxan-diabetic rat. Am J Physiol. 1968 Jul;215(1):63–70. doi: 10.1152/ajplegacy.1968.215.1.63. [DOI] [PubMed] [Google Scholar]
  8. Bryant R. W., Bailey J. M. Isolation of a new lipoxygenase metabolite of arachidonic acid, 8. 11, 12-trihydroxy-5,9,14-eicosatrienoic acid from human platelets. Prostaglandins. 1979 Jan;17(1):9–18. doi: 10.1016/0090-6980(79)90071-6. [DOI] [PubMed] [Google Scholar]
  9. Capdevila J., Marnett L. J., Chacos N., Prough R. A., Estabrook R. W. Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. Proc Natl Acad Sci U S A. 1982 Feb;79(3):767–770. doi: 10.1073/pnas.79.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chacos N., Falck J. R., Wixtrom C., Capdevila J. Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid. Biochem Biophys Res Commun. 1982 Feb 11;104(3):916–922. doi: 10.1016/0006-291x(82)91336-5. [DOI] [PubMed] [Google Scholar]
  11. Clements R. S., Jr, Rhoten W. B. Phosphoinositide metabolism and insulin secretion from isolated rat pancreatic islets. J Clin Invest. 1976 Mar;57(3):684–691. doi: 10.1172/JCI108325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Colwell J. A., Halushka P. V., Sarji K., Levine J., Sagel J., Nair R. M. Altered platelet function in diabetes mellitus. Diabetes. 1976;25(2 Suppl):826–831. [PubMed] [Google Scholar]
  13. Cottee F., Flower R. J., Moncada S., Salmon J. A., Vane J. R. Synthesis of 6-keto-PGF1alpha by ram seminal vesicle microsomes. Prostaglandins. 1977 Sep;14(3):413–423. doi: 10.1016/0090-6980(77)90257-x. [DOI] [PubMed] [Google Scholar]
  14. Craven P. A., Studer R. K., Derubertis F. R. Renal inner medullary prostaglandin synthesis. A calcium-calmodulin-dependent process suppressed by urea. J Clin Invest. 1981 Sep;68(3):722–732. doi: 10.1172/JCI110308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Crespin S. R., Greenough W. B., 3rd, Steinberg D. Stimulation of insulin secretion by long-chain free fatty acids. A direct pancreatic effect. J Clin Invest. 1973 Aug;52(8):1979–1984. doi: 10.1172/JCI107382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dunlop M., Larkins R. G., Court J. M. Endogenous ionophoretic activity in the neonatal rat pancreatic islet. FEBS Lett. 1982 Aug 2;144(2):259–263. doi: 10.1016/0014-5793(82)80650-9. [DOI] [PubMed] [Google Scholar]
  17. Erman A., Azuri R., Raz A. Different pools of esterified arachidonic acid in rabbit kidney medulla: relationship to Ca2+-stimulated prostaglandin biosynthesis. Lipids. 1982 Mar;17(3):119–123. doi: 10.1007/BF02535090. [DOI] [PubMed] [Google Scholar]
  18. Fridovich S. E., Porter N. A. Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide. J Biol Chem. 1981 Jan 10;256(1):260–265. [PubMed] [Google Scholar]
  19. Hamberg M., Fredholm B. B. Isomerization of prostaglandin H2 into prostaglandin D2 in the presence of serum albumin. Biochim Biophys Acta. 1976 Apr 22;431(1):189–183. doi: 10.1016/0005-2760(76)90273-3. [DOI] [PubMed] [Google Scholar]
  20. Hamberg M., Samuelsson B. On the specificity of the oxygenation of unsaturated fatty acids catalyzed by soybean lipoxidase. J Biol Chem. 1967 Nov 25;242(22):5329–5335. [PubMed] [Google Scholar]
  21. Heaney T. P., Larkins R. G. The effect of prostacyclin and 6-keto-prostaglandin F1 alpha on insulin secretion and cyclic adenosine 3', 5'-monophosphate content in isolated rat islets. Diabetes. 1981 Oct;30(10):824–828. doi: 10.2337/diab.30.10.824. [DOI] [PubMed] [Google Scholar]
  22. Hong S. L., Levine L. Stimulation of prostaglandin synthesis by bradykinin and thrombin and their mechanisms of action on MC5-5 fibroblasts. J Biol Chem. 1976 Sep 25;251(18):5814–5816. [PubMed] [Google Scholar]
  23. Irvine R. F., Letcher A. J., Dawson R. M. Fatty acid stimulation of membrane phosphatidylinositol hydrolysis by brain phosphatidylinositol phosphodiesterase. Biochem J. 1979 Feb 15;178(2):497–500. doi: 10.1042/bj1780497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kelly K. L., Laychock S. G. Prostaglandin synthesis and metabolism in isolated pancreatic islets of the rat. Prostaglandins. 1981 May;21(5):759–769. doi: 10.1016/0090-6980(81)90233-1. [DOI] [PubMed] [Google Scholar]
  25. Koch R. B. Calcium ion activation of lipoxidase. Arch Biochem Biophys. 1968 Apr;125(1):303–307. doi: 10.1016/0003-9861(68)90665-6. [DOI] [PubMed] [Google Scholar]
  26. Krausz Y., Wollheim C. B., Siegel E., Sharp G. W. Possible role for calmodulin in insulin release. Studies with trifluoperazine in rat pancreatic islets. J Clin Invest. 1980 Sep;66(3):603–607. doi: 10.1172/JCI109893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  28. Landgraf R., Landgraf-Leurs M. M. The prostaglandins system and insulin release. Studies with the isolated perfused rat pancreas. Prostaglandins. 1979 Apr;17(4):599–613. doi: 10.1016/0090-6980(79)90011-x. [DOI] [PubMed] [Google Scholar]
  29. Laychock S. G. Phospholipase A2 activity in pancreatic islets is calcium-dependent and stimulated by glucose. Cell Calcium. 1982 Mar;3(1):43–54. doi: 10.1016/0143-4160(82)90036-7. [DOI] [PubMed] [Google Scholar]
  30. Malaisse W. J., Sener A., Herchuelz A., Carpinelli A. R., Poloczek P., Winand J., Castagna M. Insulinotropic effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in rat pancreatic islets. Cancer Res. 1980 Oct;40(10):3827–3831. [PubMed] [Google Scholar]
  31. Metz S. A. Feedback modulation of glucose-induced insulin secretion by arachidonic acid metabolites: possible molecular mechanisms and relevance to diabetes mellitus. Prostaglandins Med. 1981 Dec;7(6):581–589. doi: 10.1016/0161-4630(81)90048-3. [DOI] [PubMed] [Google Scholar]
  32. Metz S. A., McRae J. R., Robertson R. P. Hypothesis: prostaglandins mediate defective glucose recognition in diabetes mellitus. Prostaglandins Med. 1980 Apr;4(4):247–254. doi: 10.1016/0161-4630(80)90019-1. [DOI] [PubMed] [Google Scholar]
  33. Metz S. A., Robertson R. P., Fujimoto W. Y. Inhibition of prostaglandin E synthesis augments glucose-induced insulin secretion is cultured pancreas. Diabetes. 1981 Jul;30(7):551–557. doi: 10.2337/diab.30.7.551. [DOI] [PubMed] [Google Scholar]
  34. Metz S., Fujimoto W., Robertson R. P. Modulation of insulin secretion by cyclic AMP and prostaglandin E: the effects of theophylline, sodium salicylate and tolbutamide. Metabolism. 1982 Oct;31(10):1014–1022. doi: 10.1016/0026-0495(82)90145-7. [DOI] [PubMed] [Google Scholar]
  35. Montague W., Taylor K. W. Islet-cell metabolism during insulin release. Effects of glucose, citrate, octanoate, tolbutamide, glucagon and theophylline. Biochem J. 1969 Nov;115(2):257–262. doi: 10.1042/bj1150257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Murphy R. C., Mathews W. R. Purification and characterization of leukotrienes from mastocytoma cells. Methods Enzymol. 1982;86:409–416. doi: 10.1016/0076-6879(82)86213-7. [DOI] [PubMed] [Google Scholar]
  37. Naccache P. H., Molski T. F., Becker E. L., Borgeat P., Picard S., Vallerand P., Sha'afi R. I. Specificity of the effect of lipoxygenase metabolites of arachidonic acid on calcium homeostasis in neutrophils. Correlation with functional activity. J Biol Chem. 1982 Aug 10;257(15):8608–8611. [PubMed] [Google Scholar]
  38. Narumiya S., Salmon J. A., Cottee F. H., Weatherley B. C., Flower R. J. Arachidonic acid 15-lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. Partial purification and properties. J Biol Chem. 1981 Sep 25;256(18):9583–9592. [PubMed] [Google Scholar]
  39. Needleman P., Wyche A., Bronson S. D., Holmberg S., Morrison A. R. Specific regulation of peptide-induced renal prostaglandin synthesis. J Biol Chem. 1979 Oct 10;254(19):9772–9779. [PubMed] [Google Scholar]
  40. Oliw E. H., Guengerich F. P., Oates J. A. Oxygenation of arachidonic acid by hepatic monooxygenases. Isolation and metabolism of four epoxide intermediates. J Biol Chem. 1982 Apr 10;257(7):3771–3781. [PubMed] [Google Scholar]
  41. Pace-Asciak C., Wolfe L. S. Inhibition of prostaglandin synthesis by oleic, linoleic and linolenic acids. Biochim Biophys Acta. 1968 Jul 1;152(4):784–787. doi: 10.1016/0005-2760(68)90126-4. [DOI] [PubMed] [Google Scholar]
  42. Parker C. W., Fischman C. M., Wedner H. J. Relationship of biosynthesis of slow reacting substance to intracellular glutathione concentrations. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6870–6873. doi: 10.1073/pnas.77.11.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Powell W. S. Rapid extraction of oxygenated metabolites of arachidonic acid from biological samples using octadecylsilyl silica. Prostaglandins. 1980 Nov;20(5):947–957. doi: 10.1016/0090-6980(80)90144-6. [DOI] [PubMed] [Google Scholar]
  44. Robertson R. P., Metz S. A. Sounding board. Prostaglandins, the glucoreceptor, and diabetes. N Engl J Med. 1979 Dec 27;301(26):1446–1447. doi: 10.1056/NEJM197912273012612. [DOI] [PubMed] [Google Scholar]
  45. Robertson R. P. Prostaglandins as modulators of pancreatic islet function. Diabetes. 1979 Oct;28(10):942–948. [PubMed] [Google Scholar]
  46. Samuelsson B., Goldyne M., Granström E., Hamberg M., Hammarström S., Malmsten C. Prostaglandins and thromboxanes. Annu Rev Biochem. 1978;47:997–1029. doi: 10.1146/annurev.bi.47.070178.005025. [DOI] [PubMed] [Google Scholar]
  47. Scharp D. W., Kemp C. B., Knight M. J., Ballinger W. F., Lacy P. E. The use of ficoll in the preparation of viable islets of langerhans from the rat pancreas. Transplantation. 1973 Dec;16(6):686–689. doi: 10.1097/00007890-197312000-00028. [DOI] [PubMed] [Google Scholar]
  48. Serhan C. N., Radin A., Smolen J. E., Korchak H., Samuelsson B., Weissmann G. Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis. Biochem Biophys Res Commun. 1982 Aug;107(3):1006–1012. doi: 10.1016/0006-291x(82)90622-2. [DOI] [PubMed] [Google Scholar]
  49. Stenson W. F., Parker C. W. Metabolism of arachidonic acid in ionophore-stimulated neutrophils. Esterification of a hydroxylated metabolite into phospholipids. J Clin Invest. 1979 Nov;64(5):1457–1465. doi: 10.1172/JCI109604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Takenawa T., Nagai Y. Purification of phosphatidylinositol-specific phospholipase C from rat liver. J Biol Chem. 1981 Jul 10;256(13):6769–6775. [PubMed] [Google Scholar]
  51. Tanigawa K., Kuzuya H., Imura H., Taniguchi H., Baba S., Takai Y., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase in rat pancreas islets of langerhans. Its possible role in glucose-induced insulin release. FEBS Lett. 1982 Feb 22;138(2):183–186. doi: 10.1016/0014-5793(82)80436-5. [DOI] [PubMed] [Google Scholar]
  52. Vanderhoek J. Y., Bryant R. W., Bailey J. M. Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid. J Biol Chem. 1980 Nov 10;255(21):10064–10066. [PubMed] [Google Scholar]
  53. Volpi M., Naccache P. H., Sha'afi R. I. Arachidonate metabolite(s) increase the permeability of the plasma membrane of the neutrophils to calcium. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1231–1237. doi: 10.1016/0006-291x(80)90418-0. [DOI] [PubMed] [Google Scholar]
  54. Walenga R. W., Opas E. E., Feinstein M. B. Differential effects of calmodulin antagonists on phospholipases A2 and C in thrombin-stimulated platelets. J Biol Chem. 1981 Dec 10;256(23):12523–12528. [PubMed] [Google Scholar]
  55. Walenga R. W., Showell H. J., Feinstein M. B., Becker E. L. Parallel inhibition of neutrophil arachidonic acid metabolism and lysosomal enzyme secretion by nordihydroguaiaretic acid. Life Sci. 1980 Sep 22;27(12):1047–1053. doi: 10.1016/0024-3205(80)90028-4. [DOI] [PubMed] [Google Scholar]
  56. Watabe T., Ueno Y., Imazumi J. Conversion of oleic acid into threo-dihydroxystearic acid by rat liver microsomes. Biochem Pharmacol. 1971 Apr;20(4):912–913. doi: 10.1016/0006-2952(71)90054-2. [DOI] [PubMed] [Google Scholar]
  57. Weissmann G., Serhan C., Smolen J. E., Korchak H. M., Friedman R., Kaplan H. B. Stimulus-secretion coupling in the human neutrophil: the role of phosphatidic acid and oxidized fatty acids in the translocation of calcium. Adv Prostaglandin Thromboxane Leukot Res. 1982;9:259–272. [PubMed] [Google Scholar]
  58. Yen S. S. Inhibition of arachidonic acid-induced contraction of guinea pig lung strips. Prostaglandins. 1981 Aug;22(2):183–194. doi: 10.1016/0090-6980(81)90033-2. [DOI] [PubMed] [Google Scholar]
  59. Zaharko D. S., Beck L. V. Studies of a simplified plasma insulin immunoassaay using cellulose powder. Diabetes. 1968 Jul;17(7):444–459. doi: 10.2337/diab.17.7.444. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES