Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 May;71(5):1263–1272. doi: 10.1172/JCI110876

Sympathoadrenal responses to acute and chronic hypoxia in the rat.

T S Johnson, J B Young, L Landsberg
PMCID: PMC436987  PMID: 6853714

Abstract

The sympathoadrenal responses to acute and chronic hypoxic exposure at 10.5 and 7.5% oxygen were determined in the rat. Cardiac norepinephrine (NE) turnover was used to assess sympathetic nervous system (SNS) activity, and urinary excretion of epinephrine (E) was measured as an index of adrenal medullary activity. The responses of the adrenal medulla and SNS were distinct and dependent upon the degree and duration of hypoxic exposure. Chronic hypoxia at 10.5% oxygen increased cardiac NE turnover by 130% after 3, 7, and 14 d of hypoxic exposure. Urinary excretion of NE was similarly increased over this time interval, while urinary E excretion was marginally elevated. In contrast, acute exposure to moderate hypoxia at 10.5% oxygen was not associated with an increase in SNS activity; in fact, decreased SNS activity was suggested by diminished cardiac NE turnover and urinary NE excretion over the first 12 h of hypoxic exposure, and by a rebound increase in NE turnover after reexposure to normal oxygen tension. Adrenal medullary activity, on the other hand, increased substantially during acute exposure to moderate hypoxia (2-fold increase in urinary E excretion) and severe hypoxia (greater than 10-fold). In distinction to the lack of effect of acute hypoxic exposure (10.5% oxygen), the SNS was markedly stimulated during the first day of hypoxia exposure at 7.5% oxygen, an increase that was sustained throughout at least 7 d at 7.5% oxygen. These results demonstrate that chronic exposure to moderate and severe hypoxia increases the activity of the SNS and adrenal medulla, the effect being greater in severe hypoxic exposure. The response to acute hypoxic exposure is more complicated; during the first 12 h of exposure at 10.5% oxygen, the SNS is not stimulated and appears to be restrained, while adrenal medullary activity is enhanced. Acute exposure to a more severe degree of hypoxia (7.5% oxygen), however, is associated with stimulation of both the SNS and adrenal medulla.

Full text

PDF
1263

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTON A. H., SAYRE D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962 Dec;138:360–375. [PubMed] [Google Scholar]
  2. BLATTEIS C. M. HYPOXIA AND THE METABOLIC RESPONSE TO COLD IN NEW-BORN RABBITS. J Physiol. 1964 Aug;172:358–368. doi: 10.1113/jphysiol.1964.sp007424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker E. J., Kreuzer F. Sympathoadrenal response to hypoxia. Pflugers Arch. 1968;304(1):1–10. doi: 10.1007/BF00586713. [DOI] [PubMed] [Google Scholar]
  4. Bhatia B., George S., Rao T. L. Hypoxic poikilothermia in rats. J Appl Physiol. 1969 Nov;27(5):583–586. doi: 10.1152/jappl.1969.27.5.583. [DOI] [PubMed] [Google Scholar]
  5. Djahanguiri B., Taubin H. L., Landsberg L. Increased sympathetic activity in the pathogenesis of restraint ulcer in rats. J Pharmacol Exp Ther. 1973 Jan;184(1):163–168. [PubMed] [Google Scholar]
  6. FOWLER N. O., SHABETAI R., HOLMES J. C. Adrenal medullary secretion during hypoxia, bleeding, and rapid intravenous infusion. Circ Res. 1961 Mar;9:427–435. doi: 10.1161/01.res.9.2.427. [DOI] [PubMed] [Google Scholar]
  7. GOLDRING R. M., TURINO G. M., COHEN G., JAMESON A. G., BASS B. G., FISHMAN A. P. The catecholamines in the pulmonary arterial pressor response to acute hypoxia. J Clin Invest. 1962 Jun;41:1211–1221. doi: 10.1172/JCI104582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldman R. H., Harrison D. C. The effects of hypoxia and hypercarbia on myocardial catecholamines. J Pharmacol Exp Ther. 1970 Aug;174(2):307–314. [PubMed] [Google Scholar]
  9. HEMINGWAY A., NAHAS G. G. Effect of varying degrees of hypoxia on temperature regulation. Am J Physiol. 1952 Aug;170(2):426–433. doi: 10.1152/ajplegacy.1952.170.2.426. [DOI] [PubMed] [Google Scholar]
  10. HILL J. R. The oxygen consumption of new-born and adult mammals. Its dependence on the oxygen tension in the inspired air and on the environmental temperature. J Physiol. 1959 Dec;149:346–373. doi: 10.1113/jphysiol.1959.sp006344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HIRS C. H. W., MOORE S., STEIN W. H. A chromatographic investigation of pancreatic ribonuclease. J Biol Chem. 1953 Feb;200(2):493–506. [PubMed] [Google Scholar]
  12. Hammill S. C., Wagner W. W., Jr, Latham L. P., Frost W. W., Weil J. V. Autonomic cardiovascular control during hypoxia in the dog. Circ Res. 1979 Apr;44(4):569–575. doi: 10.1161/01.res.44.4.569. [DOI] [PubMed] [Google Scholar]
  13. Hayashi M., Nagasaka T. Enhanced heat production in physically restrained rats in hypoxia. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1601–1606. doi: 10.1152/jappl.1981.51.6.1601. [DOI] [PubMed] [Google Scholar]
  14. Johnson T. S., Young J. B., Landsberg L. Norepinephrine turnover in lung: effect of cold exposure and chronic hypoxia. J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):614–620. doi: 10.1152/jappl.1981.51.3.614. [DOI] [PubMed] [Google Scholar]
  15. Landsberg L., Berardino M. B., Silva P. Metabolism of 3-H-L-dopa by the rat gut in vivo-evidence for glucuronide conjugation. Biochem Pharmacol. 1975 Jun 15;24(11-12):1167–1174. doi: 10.1016/0006-2952(75)90057-x. [DOI] [PubMed] [Google Scholar]
  16. Landsberg L., Young J. B. Fasting, feeding and regulation of the sympathetic nervous system. N Engl J Med. 1978 Jun 8;298(23):1295–1301. doi: 10.1056/NEJM197806082982306. [DOI] [PubMed] [Google Scholar]
  17. Lee J. C., Werner J. C., Downing S. E. Adrenal contribution to cardiac responses elicited by acute hypoxia in piglets. Am J Physiol. 1980 Dec;239(6):H751–H755. doi: 10.1152/ajpheart.1980.239.6.H751. [DOI] [PubMed] [Google Scholar]
  18. MALMEJAC J. ACTIVITY OF THE ADRENAL MEDULLA AND ITS REGULATION. Physiol Rev. 1964 Apr;44:186–218. doi: 10.1152/physrev.1964.44.2.186. [DOI] [PubMed] [Google Scholar]
  19. Maher J. T., Jones L. G., Hartley L. H., Williams G. H., Rose L. I. Aldosterone dynamics during graded exercise at sea level and high altitude. J Appl Physiol. 1975 Jul;39(1):18–22. doi: 10.1152/jappl.1975.39.1.18. [DOI] [PubMed] [Google Scholar]
  20. Meyrick B., Reid L. The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest. 1978 Feb;38(2):188–200. [PubMed] [Google Scholar]
  21. Myles W. S., Ducker A. J. The excretion of catecholamines in rats during acute and chronic exposure to altitude. Can J Physiol Pharmacol. 1971 Aug;49(8):721–726. doi: 10.1139/y71-098. [DOI] [PubMed] [Google Scholar]
  22. Myles W. S., Ducker A. J. The role of the sympathetic nervous system during exposure to altitude in rats. Int J Biometeorol. 1973 Mar;17(1):51–58. doi: 10.1007/BF01553645. [DOI] [PubMed] [Google Scholar]
  23. NAHAS G. G., MATHER G. W., WARGO J. D., ADAMS W. L. Influence of acute hypoxia on sympathectomized and adrenalectomized dogs. Am J Physiol. 1954 Apr;177(1):13–15. doi: 10.1152/ajplegacy.1954.177.1.13. [DOI] [PubMed] [Google Scholar]
  24. Rappaport E. B., Young J. B., Landsberg L. Effects of 2-deoxy-D-glucose on the cardiac sympathetic nerves and the adrenal medulla in the rat: further evidence for a dissociation of sympathetic nervous system and adrenal medullary responses. Endocrinology. 1982 Feb;110(2):650–656. doi: 10.1210/endo-110-2-650. [DOI] [PubMed] [Google Scholar]
  25. Riggin R. M., Kissinger P. T. Determination of catecholamines in urine by reverse-phase liquid chromatography with electrochemical detection. Anal Chem. 1977 Nov;49(13):2109–2111. doi: 10.1021/ac50021a052. [DOI] [PubMed] [Google Scholar]
  26. Sharma S. C., Balasubramanian V., Mathew O. P., Hoon R. S. Serial studies of heart rate, blood pressure and urinary catecholamine excretion on acute induction to high altitude (3658m). Indian J Chest Dis Allied Sci. 1977 Jan;19(1):16–20. [PubMed] [Google Scholar]
  27. Silva P., Landsberg L., Besarab A. Excretion and metabolism of catecholamines by the isolated perfused rat kidney. J Clin Invest. 1979 Sep;64(3):850–857. doi: 10.1172/JCI109533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinsland O. S., Passo S. S., Nahas G. G. Biphasic effect of hypoxia on adrenal catecholamine content. Am J Physiol. 1970 Apr;218(4):995–998. doi: 10.1152/ajplegacy.1970.218.4.995. [DOI] [PubMed] [Google Scholar]
  29. Surks M. I., Beckwitt H. J., Chidsey C. A. Changes in plasma thyroxine concentration and metabolism, catecholamine excretion and basal oxygen consumption in man during acute exposure to high altitude. J Clin Endocrinol Metab. 1967 Jun;27(6):789–799. doi: 10.1210/jcem-27-6-789. [DOI] [PubMed] [Google Scholar]
  30. Taubin H. L., Djahanguiri B., Landsberg L. Noradrenaline concentration and turnover in different regions of the gastrointestinal tract of the rat: an approach to the evaluation of sympathetic activity in the gut. Gut. 1972 Oct;13(10):790–795. doi: 10.1136/gut.13.10.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tucker A. Pulmonary and systemic vascular responses to hypoxia after chemical sympathectomy. Cardiovasc Res. 1979 Aug;13(8):469–476. doi: 10.1093/cvr/13.8.469. [DOI] [PubMed] [Google Scholar]
  32. Young J. B., Landsberg L. Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver. Am J Physiol. 1979 May;236(5):E524–E533. doi: 10.1152/ajpendo.1979.236.5.E524. [DOI] [PubMed] [Google Scholar]
  33. Young J. B., Landsberg L. Sympathoadrenal activity in fasting pregnant rats. Dissociation of adrenal medullary and sympathetic nervous system responses. J Clin Invest. 1979 Jul;64(1):109–116. doi: 10.1172/JCI109429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Young J. B., Saville E., Rothwell N. J., Stock M. J., Landsberg L. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J Clin Invest. 1982 May;69(5):1061–1071. doi: 10.1172/JCI110541. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES