Abstract
The transit of 14CO2 and H14CO3- through the renal vasculature was studied in rabbit kidneys perfused without erythrocytes and in an in vivo preparation in which erythrocytes were present. In the absence of erythrocytes, the transit of 14CO2 from the renal artery to renal vein was much more rapid than that of H14CO3-. This suggests that (a) there is insufficient carbonic anhydrase (c.a.) in the vasculature between the renal artery and the exchange vessels of the kidney to ensure equilibration between CO2 and HCO3- and (b) CO2 can diffuse directly between arterial and venous vessels in the kidney. Following infusions of carbonic anhydrase, the renal venous outflow patterns of 14CO2 and H14CO3- became the same in the perfused kidneys. Although the initial recovery of 14CO2 remained greater than that of H14CO3- after infusions of acetazolamide (a c.a. inhibitor), arteriovenous diffusion of 14CO2 was diminished by this agent. This is attributed to inhibition of renal tubular c.a. The outflow patterns of H14CO3- and 14CO2 were nearly the same in the presence of erythrocytes, indicating that erythrocyte c.a. is sufficiently accessible to permit virtual equilibration of these radionuclides during the interval required for transit between the renal artery and exchange vessels. However, addition of carbonic anhydrase to the plasma seemed to accelerate transit of both 14CO2 and H14CO3- through the kidneys, and a small disequilibrium between CO2 and HCO3- may therefore normally be present in the renal interstitium and capillaries.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aukland K. Renal medullary heat clearance in the dog. Circ Res. 1967 Feb;20(2):194–203. doi: 10.1161/01.res.20.2.194. [DOI] [PubMed] [Google Scholar]
- Bichara M., Paillard M., Leviel F., Gardin J. P. Hydrogen transport in rabbit kidney proximal tubules--Na:H exchange. Am J Physiol. 1980 Jun;238(6):F445–F451. doi: 10.1152/ajprenal.1980.238.6.F445. [DOI] [PubMed] [Google Scholar]
- CRONE C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' METHOD. Acta Physiol Scand. 1963 Aug;58:292–305. doi: 10.1111/j.1748-1716.1963.tb02652.x. [DOI] [PubMed] [Google Scholar]
- Chinard F. P., Thaw C. N., Delea A. C., Perl W. Intrarenal volumes of distribution and relative diffusion coefficients of monohydric alcohols. Circ Res. 1969 Sep;25(3):343–357. doi: 10.1161/01.res.25.3.343. [DOI] [PubMed] [Google Scholar]
- Clausen G., Hope A., Kirkebø A., Tyssebotn I., Aukland K. Distribution of blood flow in the dog kidney. I. Saturation rates for inert diffusible tracers, 125I-iodoantipyrine and tritiated water, versus uptake of microspheres under control conditions. Acta Physiol Scand. 1979 Sep;107(1):69–81. doi: 10.1111/j.1748-1716.1979.tb06444.x. [DOI] [PubMed] [Google Scholar]
- Crandall E. D., O'Brasky J. E. Direct evidence of participation of rat lung carbonic anhydrase in CO2 reactions. J Clin Invest. 1978 Sep;62(3):618–622. doi: 10.1172/JCI109168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DuBose T. D., Jr, Pucacco L. R., Lucci M. S., Carter N. W. Micropuncture determination of pH, PCO2, and total CO2 concentration in accessible structures of the rat renal cortex. J Clin Invest. 1979 Aug;64(2):476–482. doi: 10.1172/JCI109485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Effros R. M., Chang R. S., Silverman P. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science. 1978 Jan 27;199(4327):427–429. doi: 10.1126/science.413195. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Chinard F. P. The in vivo pH of the extravascular space of the lung. J Clin Invest. 1969 Nov;48(11):1983–1996. doi: 10.1172/JCI106164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Effros R. M., Corbeil N., Chinard F. P. Arterial pH and distribution of barbiturates between pulmonary tissue and blood. J Appl Physiol. 1972 Nov;33(5):656–664. doi: 10.1152/jappl.1972.33.5.656. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Haider B., Ettinger P. O., Ahmed Sultan S., Oldewurtel H. A., Marold K., Regan T. J. In vivo myocardial cell pH in the dog. Response to ischemia and infusion of alkali. J Clin Invest. 1975 May;55(5):1100–1110. doi: 10.1172/JCI108011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Effros R. M., Mason G., Silverman P. Asymmetric distribution of carbonic anhydrase in the alveolar-capillary barrier. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jul;51(1):190–193. doi: 10.1152/jappl.1981.51.1.190. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Mason G., Silverman P. Role of perfusion and diffusion in 14CO2 exchange in the rabbit lung. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1136–1144. doi: 10.1152/jappl.1981.51.5.1136. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Shapiro L., Silverman P. Carbonic anhydrase activity of rabbit lungs. J Appl Physiol Respir Environ Exerc Physiol. 1980 Oct;49(4):589–600. doi: 10.1152/jappl.1980.49.4.589. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Weissman M. L. Carbonic anhydrase activity of the cat hind leg. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):1090–1098. doi: 10.1152/jappl.1979.47.5.1090. [DOI] [PubMed] [Google Scholar]
- Enns T. Facilitation by carbonic anhydrase of carbon dioxide transport. Science. 1967 Jan 6;155(3758):44–47. doi: 10.1126/science.155.3758.44. [DOI] [PubMed] [Google Scholar]
- Fain W., Rosen S. Carbonic anhydrase activity in amphibian and reptilian lung: a histochemical and biochemical analysis. Histochem J. 1973 Nov;5(6):519–528. doi: 10.1007/BF01012058. [DOI] [PubMed] [Google Scholar]
- Forster R. E., Crandall E. D. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol. 1975 Apr;38(4):710–718. doi: 10.1152/jappl.1975.38.4.710. [DOI] [PubMed] [Google Scholar]
- Gutknecht J., Bisson M. A., Tosteson F. C. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol. 1977 Jun;69(6):779–794. doi: 10.1085/jgp.69.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgen G. D., Falk R. J. A radiotracer assay for carbonic anhydrase. Int J Appl Radiat Isot. 1971 Aug;22(8):492–495. doi: 10.1016/0020-708x(71)90173-6. [DOI] [PubMed] [Google Scholar]
- Holmes R. S. Purification, molecular properties and ontogeny of carbonic anhydrase isozymes. Evidence for A, B and C isozymes in avian and mammalian tissues. Eur J Biochem. 1977 Sep;78(2):511–520. doi: 10.1111/j.1432-1033.1977.tb11764.x. [DOI] [PubMed] [Google Scholar]
- Klocke R. A. Catalysis of CO2 reactions by lung carbonic anhydrase. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jun;44(6):882–888. doi: 10.1152/jappl.1978.44.6.882. [DOI] [PubMed] [Google Scholar]
- Klocke R. A. Equilibrium of CO2 reactions in the pulmonary capillary. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jun;48(6):972–976. doi: 10.1152/jappl.1980.48.6.972. [DOI] [PubMed] [Google Scholar]
- Koester M. K., Register A. M., Noltmann E. A. Basic muscle protein, a third genetic locus isoenzyme of carbonic anhydrase? Biochem Biophys Res Commun. 1977 May 9;76(1):196–204. doi: 10.1016/0006-291x(77)91686-2. [DOI] [PubMed] [Google Scholar]
- LEVY M. N., SAUCEDA G. Diffusion of oxygen from arterial to venous segments of renal capillaires. Am J Physiol. 1959 Jun;196(6):1336–1339. doi: 10.1152/ajplegacy.1959.196.6.1336. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G. Carbonic anhydrase in rat liver and rabbit skeletal muscle: further evidence for the specificity of the histochemical cobalt-phosphate method of Hansson. J Histochem Cytochem. 1980 May;28(5):427–433. doi: 10.1177/28.5.6769996. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G. Carbonic anhydrase in the lung. Acta Physiol Scand. 1980 Feb;108(2):197–199. doi: 10.1111/j.1748-1716.1980.tb06521.x. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G. Histochemical demonstration of carbonic anhydrase activity in the human kidney. Acta Physiol Scand. 1973 Aug;88(4):455–468. doi: 10.1111/j.1748-1716.1973.tb05475.x. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G. Histochemical demonstration of carbonic anhydrase activity in the rat kidney. Acta Physiol Scand. 1971 Apr;81(4):433–439. doi: 10.1111/j.1748-1716.1971.tb04920.x. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G., Ridderstråle Y. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 1980 Feb;17(2):162–174. doi: 10.1038/ki.1980.20. [DOI] [PubMed] [Google Scholar]
- MEIER P., ZIERLER K. L. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954 Jun;6(12):731–744. doi: 10.1152/jappl.1954.6.12.731. [DOI] [PubMed] [Google Scholar]
- Perl W., Chinard F. P. A convection-diffusion model of indicator transport through an organ. Circ Res. 1968 Feb;22(2):273–298. doi: 10.1161/01.res.22.2.273. [DOI] [PubMed] [Google Scholar]
- Register A. M., Koester M. K., Noltmann E. A. Discovery of carbonic anhydrase in rabbit skeletal muscle and evidence for its identity with "basic muscle protein". J Biol Chem. 1978 Jun 25;253(12):4143–4152. [PubMed] [Google Scholar]
- Rosen S. Localization of carbonic anhydrase activity in the vertebrate nephron. Histochem J. 1972 Jan;4(1):35–48. doi: 10.1007/BF01005267. [DOI] [PubMed] [Google Scholar]
- Ryan U. S., Whitney P. L., Ryan J. W. Localization of carbonic anhydrase on pulmonary artery endothelial cells in culture. J Appl Physiol Respir Environ Exerc Physiol. 1982 Oct;53(4):914–919. doi: 10.1152/jappl.1982.53.4.914. [DOI] [PubMed] [Google Scholar]
- Spicer S. S., Stoward P. J., Tashian R. E. The immunohistolocalization of carbonic anhydrase in rodent tissues. J Histochem Cytochem. 1979 Apr;27(4):820–831. doi: 10.1177/27.4.109495. [DOI] [PubMed] [Google Scholar]
- Struyvenberg A., Morrison R. B., Relman A. S. Acid-base behavior of separated canine renal tubule cells. Am J Physiol. 1968 May;214(5):1155–1162. doi: 10.1152/ajplegacy.1968.214.5.1155. [DOI] [PubMed] [Google Scholar]
- WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitney P. L., Briggle T. V. Membrane-associated carbonic anhydrase purified from bovine lung. J Biol Chem. 1982 Oct 25;257(20):12056–12059. [PubMed] [Google Scholar]
