Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Dec;72(6):1889–1900. doi: 10.1172/JCI111152

Purine metabolism in myeloid precursor cells during maturation. Studies with the HL-60 cell line.

D L Lucas, H K Webster, D G Wright
PMCID: PMC437028  PMID: 6139386

Abstract

In studies with the human promyelocytic leukemia cell line HL-60, we defined changes in intermediary purine metabolism that appear to contribute to the regulation of terminal maturation in myeloid cells. When HL-60 cells were exposed to compounds that induce maturation, consistent alterations in purine metabolism were found to occur within 24 h of culture. Perturbation of guanosine nucleotide synthesis and decreases of up to 50% in intracellular guanylate pool sizes were associated with the induced maturation of these cells in response to diverse inducing agents. While immature HL-60 cells were observed to synthesize purine nucleotides by both de novo and salvage pathways, the activity of both pathways decreased in cells induced to mature, although the relative contribution of purine salvage increased. Moreover, incorporation of the salvage pathway precursor, [14C]hypoxanthine from the intermediate, inosine monophosphate (IMP), into guanylates was reduced by approximately 65% in induced HL-60 cells, reflecting decreased activity of both hypoxanthine phosphoribosyltransferase and IMP dehydrogenase. When various inhibitors of IMP dehydrogenase (mycophenolic acid, 3-deazaguanosine, and 2-beta-D-ribofuranosylthiazole-4-carboxamide) were evaluated for their effects upon HL-60 cells, each agent was found to induce the cells to mature morphologically and functionally. Like other inducers, these agents decreased HL-60 cell proliferation and caused the cells to acquire an ability to phagocytose opsonized yeast and reduce nitroblue tetrazolium. Each agent reduced intracellular guanosine nucleotide pool sizes and induced HL-60 cell maturation at micromolar concentrations. These observations suggest that the size of intracellular guanosine nucleotide pools, the biosynthesis of guanosine nucleotides, and the activity of IMP dehydrogenase may be central to the regulation of terminal maturation in myeloid cells.

Full text

PDF
1889

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baehner R. L., Nathan D. G. Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N Engl J Med. 1968 May 2;278(18):971–976. doi: 10.1056/NEJM196805022781801. [DOI] [PubMed] [Google Scholar]
  2. Becher H. J., Löhr G. W. Inosine 5'-phosphate dehydrogenase activity in normal and leukemic blood cells. Klin Wochenschr. 1979 Oct 15;57(20):1109–1115. doi: 10.1007/BF01481491. [DOI] [PubMed] [Google Scholar]
  3. Breitman T. R., Selonick S. E., Collins S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980 May;77(5):2936–2940. doi: 10.1073/pnas.77.5.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carson D. A., Kaye J., Seegmiller J. E. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci U S A. 1977 Dec;74(12):5677–5681. doi: 10.1073/pnas.74.12.5677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins S. J., Bodner A., Ting R., Gallo R. C. Induction of morphological and functional differentiation of human promyelocytic leukemia cells (HL-60) by componuds which induce differentiation of murine leukemia cells. Int J Cancer. 1980 Feb 15;25(2):213–218. doi: 10.1002/ijc.2910250208. [DOI] [PubMed] [Google Scholar]
  6. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  7. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med. 1979 Apr 1;149(4):969–974. doi: 10.1084/jem.149.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A. 1978 May;75(5):2458–2462. doi: 10.1073/pnas.75.5.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cook P. D., Rousseau R. J., Mian A. M., Dea P., Meyer R. B., Jr, Robins R. K. Synthesis of 3-deazaguanine, 3-deazaguanosine, and 3-deazaguanylic acid by a novel ring closure of imidazole precursors. J Am Chem Soc. 1976 Mar 17;98(6):1492–1498. doi: 10.1021/ja00422a036. [DOI] [PubMed] [Google Scholar]
  10. Dalla-Favera R., Wong-Staal F., Gallo R. C. Onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient. Nature. 1982 Sep 2;299(5878):61–63. doi: 10.1038/299061a0. [DOI] [PubMed] [Google Scholar]
  11. Fischer D., Van der Weyden M. B., Snyderman R., Kelley W. N. A role for adenosine deaminase in human monocyte maturation. J Clin Invest. 1976 Aug;58(2):399–407. doi: 10.1172/JCI108484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fontana J. A., Wright D. G., Schiffman E., Corcoran B. A., Deisseroth A. B. Development of chemotactic responsiveness in myeloid precursor cells: studies with a human leukemia cell line. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3664–3668. doi: 10.1073/pnas.77.6.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  14. Gusella J. F., Housman D. Induction of erythroid differentiation in vitro by purines and purine analogues. Cell. 1976 Jun;8(2):263–269. doi: 10.1016/0092-8674(76)90010-6. [DOI] [PubMed] [Google Scholar]
  15. Heinze J. E., Mitani T., Rich K. E., Freese E. Induction of sporulation by inhibitory purines and related compounds. Biochim Biophys Acta. 1978 Nov 21;521(1):16–26. doi: 10.1016/0005-2787(78)90245-9. [DOI] [PubMed] [Google Scholar]
  16. Holschuh K., Gassen H. G. Mechanism of translocation. Binding equilibria between the ribosome, mRNA analogues, and cognate tRNAs. J Biol Chem. 1982 Feb 25;257(4):1987–1992. [PubMed] [Google Scholar]
  17. Jackson R. C., Weber G., Morris H. P. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature. 1975 Jul 24;256(5515):331–333. doi: 10.1038/256331a0. [DOI] [PubMed] [Google Scholar]
  18. Jayaram H. N., Dion R. L., Glazer R. I., Johns D. G., Robins R. K., Srivastava P. C., Cooney D. A. Initial studies on the mechanism of action of a new oncolytic thiazole nucleoside, 2-beta-D-ribofuranosylthiazole-4-carboxamide (NSC 286193). Biochem Pharmacol. 1982 Jul 15;31(14):2371–2380. doi: 10.1016/0006-2952(82)90532-9. [DOI] [PubMed] [Google Scholar]
  19. Kamatani N., Carson D. A. Abnormal regulation of methylthioadenosine and polyamine metabolism in methylthioadenosine phosphorylase-deficient human leukemic cell lines. Cancer Res. 1980 Nov;40(11):4178–4182. [PubMed] [Google Scholar]
  20. Kessel D., Shurin S. B. Transport of two non-metabolized nucleosides, deoxycytidine and cytosine arabinoside, in a sub-line of the L1210 murine leukemia. Biochim Biophys Acta. 1968 Sep 17;163(2):179–187. doi: 10.1016/0005-2736(68)90096-5. [DOI] [PubMed] [Google Scholar]
  21. Newburger P. E., Chovaniec M. E., Greenberger J. S., Cohen H. J. Functional changes in human leukemic cell line HL-60. A model for myeloid differentiation. J Cell Biol. 1979 Aug;82(2):315–322. doi: 10.1083/jcb.82.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reem G. H., Friend C. Purine metabolism in murine virus-induced erythroleukemic cells during differentiation in vitro. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1630–1634. doi: 10.1073/pnas.72.4.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robins R. K., Srivastava P. C., Narayanan V. L., Plowman J., Paull K. D. 2-beta-D-Ribofuranosylthiazole-4-carboxamide, a novel potential antitumor agent for lung tumors and metastases. J Med Chem. 1982 Feb;25(2):107–108. doi: 10.1021/jm00344a002. [DOI] [PubMed] [Google Scholar]
  24. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  25. Saunders P. P., Chao L. Y., Loo T. L., Robins R. K. Actions of 3-deazaguanine and 3-deazaguanosine on variant lines of Chinese hamster ovary cells. Biochem Pharmacol. 1981 Aug 15;30(16):2374–2376. doi: 10.1016/0006-2952(81)90118-0. [DOI] [PubMed] [Google Scholar]
  26. Scolnick E. M., Papageorge A. G., Shih T. Y. Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5355–5359. doi: 10.1073/pnas.76.10.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smyth J. F., Poplack D. G., Holiman B. J., Leventhal B. G., Yarbro G. Correlation of adenosine deaminase activity with cell surface markers in acute lymphoblastic leukemia. J Clin Invest. 1978 Sep;62(3):710–712. doi: 10.1172/JCI109179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Streeter D. G., Miller J. P. The in vitro inhibition of purine nucleotide biosynthesis by 2-beta-D-ribofuranosylthiazole-4-carboxamide. Biochem Biophys Res Commun. 1981 Dec 31;103(4):1409–1415. doi: 10.1016/0006-291x(81)90280-1. [DOI] [PubMed] [Google Scholar]
  29. Sweeney M. J., Hoffman D. H., Esterman M. A. Metabolism and biochemistry of mycophenolic acid. Cancer Res. 1972 Sep;32(9):1803–1809. [PubMed] [Google Scholar]
  30. Weber G. Enzymology of cancer cells (second of two parts). N Engl J Med. 1977 Mar 10;296(10):541–551. doi: 10.1056/NEJM197703102961005. [DOI] [PubMed] [Google Scholar]
  31. Webster H. K., Whaun J. M. Application of simultaneous UV-radioactivity high-performance liquid chromatography to the study of intermediary metabolism. I. Purine nucleotides, nucleosides and bases. J Chromatogr. 1981 May 15;209(2):283–292. doi: 10.1016/s0021-9673(00)81590-3. [DOI] [PubMed] [Google Scholar]
  32. Weissbach H., Ochoa S. Soluble factors required for eukaryotic protein synthesis. Annu Rev Biochem. 1976;45:191–216. doi: 10.1146/annurev.bi.45.070176.001203. [DOI] [PubMed] [Google Scholar]
  33. Westin E. H., Wong-Staal F., Gelmann E. P., Dalla-Favera R., Papas T. S., Lautenberger J. A., Eva A., Reddy E. P., Tronick S. R., Aaronson S. A. Expression of cellular homologues of retroviral onc genes in human hematopoietic cells. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2490–2494. doi: 10.1073/pnas.79.8.2490. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES