Skip to main content
Springer logoLink to Springer
. 2014 Jun 11;74(6):2901. doi: 10.1140/epjc/s10052-014-2901-8

Probing color coherence effects in pp collisions at s=7TeV

The CMS Collaboration186, S Chatrchyan 1, V Khachatryan 1, A M Sirunyan 1, A Tumasyan 1, W Adam 2, T Bergauer 2, M Dragicevic 2, J Erö 2, C Fabjan 2, M Friedl 2, R Frühwirth 2, V M Ghete 2, N Hörmann 2, J Hrubec 2, M Jeitler 2, W Kiesenhofer 2, V Knünz 2, M Krammer 2, I Krätschmer 2, D Liko 2, I Mikulec 2, D Rabady 2, B Rahbaran 2, C Rohringer 2, H Rohringer 2, R Schöfbeck 2, J Strauss 2, A Taurok 2, W Treberer-Treberspurg 2, W Waltenberger 2, C-E Wulz 2, V Mossolov 3, N Shumeiko 3, J Suarez Gonzalez 3, S Alderweireldt 4, M Bansal 4, S Bansal 4, T Cornelis 4, E A De Wolf 4, X Janssen 4, A Knutsson 4, S Luyckx 4, L Mucibello 4, S Ochesanu 4, B Roland 4, R Rougny 4, Z Staykova 4, H Van Haevermaet 4, P Van Mechelen 4, N Van Remortel 4, A Van Spilbeeck 4, F Blekman 5, S Blyweert 5, J D’Hondt 5, A Kalogeropoulos 5, J Keaveney 5, S Lowette 5, M Maes 5, A Olbrechts 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, G P Van Onsem 5, I Villella 5, C Caillol 6, B Clerbaux 6, G De Lentdecker 6, L Favart 6, A P R Gay 6, T Hreus 6, A Léonard 6, P E Marage 6, A Mohammadi 6, L Perniè 6, T Reis 6, T Seva 6, L Thomas 6, C Vander Velde 6, P Vanlaer 6, J Wang 6, V Adler 7, K Beernaert 7, L Benucci 7, A Cimmino 7, S Costantini 7, S Dildick 7, G Garcia 7, B Klein 7, J Lellouch 7, A Marinov 7, J Mccartin 7, A A Ocampo Rios 7, D Ryckbosch 7, M Sigamani 7, N Strobbe 7, F Thyssen 7, M Tytgat 7, S Walsh 7, E Yazgan 7, N Zaganidis 7, S Basegmez 8, C Beluffi 8, G Bruno 8, R Castello 8, A Caudron 8, L Ceard 8, G G Da Silveira 8, C Delaere 8, T du Pree 8, D Favart 8, L Forthomme 8, A Giammanco 8, J Hollar 8, P Jez 8, V Lemaitre 8, J Liao 8, O Militaru 8, C Nuttens 8, D Pagano 8, A Pin 8, K Piotrzkowski 8, A Popov 8, M Selvaggi 8, M Vidal Marono 8, J M Vizan Garcia 8, N Beliy 9, T Caebergs 9, E Daubie 9, G H Hammad 9, G A Alves 10, M Correa Martins Junior 10, T Martins 10, M E Pol 10, M H G Souza 10, W L Aldá Júnior 11, W Carvalho 11, J Chinellato 11, A Custódio 11, E M Da Costa 11, D De Jesus Damiao 11, C De Oliveira Martins 11, S Fonseca De Souza 11, H Malbouisson 11, M Malek 11, D Matos Figueiredo 11, L Mundim 11, H Nogima 11, W L Prado Da Silva 11, A Santoro 11, A Sznajder 11, E J Tonelli Manganote 11, A Vilela Pereira 11, F A Dias 12, T R Fernandez Perez Tomei 12, C Lagana 12, S F Novaes 12, Sandra S Padula 12, C A Bernardes 13, E M Gregores 13, P G Mercadante 13, V Genchev 14, P Iaydjiev 14, S Piperov 14, M Rodozov 14, G Sultanov 14, M Vutova 14, A Dimitrov 15, R Hadjiiska 15, V Kozhuharov 15, L Litov 15, B Pavlov 15, P Petkov 15, J G Bian 16, G M Chen 16, H S Chen 16, C H Jiang 16, D Liang 16, S Liang 16, X Meng 16, J Tao 16, X Wang 16, Z Wang 16, C Asawatangtrakuldee 17, Y Ban 17, Y Guo 17, Q Li 17, W Li 17, S Liu 17, Y Mao 17,182, S J Qian 17, D Wang 17, L Zhang 17, W Zou 17, C Avila 18, C A Carrillo Montoya 18, L F Chaparro Sierra 18, J P Gomez 18, B Gomez Moreno 18, J C Sanabria 18, N Godinovic 19, D Lelas 19, R Plestina 19, D Polic 19, I Puljak 19, Z Antunovic 20, M Kovac 20, V Brigljevic 21, K Kadija 21, J Luetic 21, D Mekterovic 21, S Morovic 21, L Tikvica 21, A Attikis 22, G Mavromanolakis 22, J Mousa 22, C Nicolaou 22, F Ptochos 22, P A Razis 22, M Finger 23, M Finger Jr 23, A A Abdelalim 24, Y Assran 24, S Elgammal 24, A Ellithi Kamel 24, M A Mahmoud 24, A Radi 24, M Kadastik 25, M Müntel 25, M Murumaa 25, M Raidal 25, L Rebane 25, A Tiko 25, P Eerola 26, G Fedi 26, M Voutilainen 26, J Härkönen 27, V Karimäki 27, R Kinnunen 27, M J Kortelainen 27, T Lampén 27, K Lassila-Perini 27, S Lehti 27, T Lindén 27, P Luukka 27, T Mäenpää 27, T Peltola 27, E Tuominen 27, J Tuominiemi 27, E Tuovinen 27, L Wendland 27, T Tuuva 28, M Besancon 29, F Couderc 29, M Dejardin 29, D Denegri 29, B Fabbro 29, J L Faure 29, F Ferri 29, S Ganjour 29, A Givernaud 29, P Gras 29, G Hamel de Monchenault 29, P Jarry 29, E Locci 29, J Malcles 29, L Millischer 29, A Nayak 29, J Rander 29, A Rosowsky 29, M Titov 29, S Baffioni 30, F Beaudette 30, L Benhabib 30, M Bluj 30, P Busson 30, C Charlot 30, N Daci 30, T Dahms 30, M Dalchenko 30, L Dobrzynski 30, A Florent 30, R Granier de Cassagnac 30, M Haguenauer 30, P Miné 30, C Mironov 30, I N Naranjo 30, M Nguyen 30, C Ochando 30, P Paganini 30, D Sabes 30, R Salerno 30, Y Sirois 30, C Veelken 30, A Zabi 30, J-L Agram 31, J Andrea 31, D Bloch 31, J-M Brom 31, E C Chabert 31, C Collard 31, E Conte 31, F Drouhin 31, J-C Fontaine 31, D Gelé 31, U Goerlach 31, C Goetzmann 31, P Juillot 31, A-C Le Bihan 31, P Van Hove 31, S Gadrat 32, S Beauceron 33, N Beaupere 33, G Boudoul 33, S Brochet 33, J Chasserat 33, R Chierici 33, D Contardo 33, P Depasse 33, H El Mamouni 33, J Fan 33, J Fay 33, S Gascon 33, M Gouzevitch 33, B Ille 33, T Kurca 33, M Lethuillier 33, L Mirabito 33, S Perries 33, L Sgandurra 33, V Sordini 33, M Vander Donckt 33, P Verdier 33, S Viret 33, H Xiao 33, Z Tsamalaidze 34, C Autermann 35, S Beranek 35, M Bontenackels 35, B Calpas 35, M Edelhoff 35, L Feld 35, N Heracleous 35, O Hindrichs 35, K Klein 35, A Ostapchuk 35, A Perieanu 35, F Raupach 35, J Sammet 35, S Schael 35, D Sprenger 35, H Weber 35, B Wittmer 35, V Zhukov 35, M Ata 36, J Caudron 36, E Dietz-Laursonn 36, D Duchardt 36, M Erdmann 36, R Fischer 36, A Güth 36, T Hebbeker 36, C Heidemann 36, K Hoepfner 36, D Klingebiel 36, S Knutzen 36, P Kreuzer 36, M Merschmeyer 36, A Meyer 36, M Olschewski 36, K Padeken 36, P Papacz 36, H Pieta 36, H Reithler 36, S A Schmitz 36, L Sonnenschein 36, J Steggemann 36, D Teyssier 36, S Thüer 36, M Weber 36,141, V Cherepanov 37, Y Erdogan 37, G Flügge 37, H Geenen 37, M Geisler 37, W Haj Ahmad 37, F Hoehle 37, B Kargoll 37, T Kress 37, Y Kuessel 37, J Lingemann 37, A Nowack 37, I M Nugent 37, L Perchalla 37, O Pooth 37, A Stahl 37, I Asin 38, N Bartosik 38, J Behr 38, W Behrenhoff 38, U Behrens 38, A J Bell 38, M Bergholz 38, A Bethani 38, K Borras 38, A Burgmeier 38, A Cakir 38, L Calligaris 38, A Campbell 38, S Choudhury 38, F Costanza 38, C Diez Pardos 38, S Dooling 38, T Dorland 38, G Eckerlin 38, D Eckstein 38, G Flucke 38, A Geiser 38, I Glushkov 38, A Grebenyuk 38, P Gunnellini 38, S Habib 38, J Hauk 38, G Hellwig 38, D Horton 38, H Jung 38, M Kasemann 38, P Katsas 38, C Kleinwort 38, H Kluge 38, M Krämer 38, D Krücker 38, E Kuznetsova 38, W Lange 38, J Leonard 38, K Lipka 38, W Lohmann 38, B Lutz 38, R Mankel 38, I Marfin 38, I-A Melzer-Pellmann 38, A B Meyer 38, J Mnich 38, A Mussgiller 38, S Naumann-Emme 38, O Novgorodova 38, F Nowak 38, J Olzem 38, H Perrey 38, A Petrukhin 38, D Pitzl 38, R Placakyte 38, A Raspereza 38, P M Ribeiro Cipriano 38, C Riedl 38, E Ron 38, M Ö Sahin 38, J Salfeld-Nebgen 38, R Schmidt 38, T Schoerner-Sadenius 38, N Sen 38, M Stein 38, R Walsh 38, C Wissing 38, M Aldaya Martin 39, V Blobel 39, H Enderle 39, J Erfle 39, E Garutti 39, U Gebbert 39, M Görner 39, M Gosselink 39, J Haller 39, K Heine 39, R S Höing 39, G Kaussen 39, H Kirschenmann 39, R Klanner 39, R Kogler 39, J Lange 39, I Marchesini 39, T Peiffer 39, N Pietsch 39, D Rathjens 39, C Sander 39, H Schettler 39, P Schleper 39, E Schlieckau 39, A Schmidt 39, M Schröder 39, T Schum 39, M Seidel 39, J Sibille 39, V Sola 39, H Stadie 39, G Steinbrück 39, J Thomsen 39, D Troendle 39, E Usai 39, L Vanelderen 39, C Barth 40, C Baus 40, J Berger 40, C Böser 40, E Butz 40, T Chwalek 40, W De Boer 40, A Descroix 40, A Dierlamm 40, M Feindt 40, M Guthoff 40, F Hartmann 40, T Hauth 40, H Held 40, K H Hoffmann 40, U Husemann 40, I Katkov 40, J R Komaragiri 40, A Kornmayer 40, P Lobelle Pardo 40, D Martschei 40, M U Mozer 40, Th Müller 40, M Niegel 40, A Nürnberg 40, O Oberst 40, J Ott 40, G Quast 40, K Rabbertz 40, F Ratnikov 40, S Röcker 40, F-P Schilling 40, G Schott 40, H J Simonis 40, F M Stober 40, R Ulrich 40, J Wagner-Kuhr 40, S Wayand 40, T Weiler 40, M Zeise 40, G Anagnostou 41, G Daskalakis 41, T Geralis 41, S Kesisoglou 41, A Kyriakis 41, D Loukas 41, A Markou 41, C Markou 41, E Ntomari 41, I Topsis-giotis 41, L Gouskos 42, A Panagiotou 42, N Saoulidou 42, E Stiliaris 42, X Aslanoglou 43, I Evangelou 43, G Flouris 43, C Foudas 43, P Kokkas 43, N Manthos 43, I Papadopoulos 43, E Paradas 43, G Bencze 44, C Hajdu 44, P Hidas 44, D Horvath 44, F Sikler 44, V Veszpremi 44, G Vesztergombi 44, A J Zsigmond 44, N Beni 45, S Czellar 45, J Molnar 45, J Palinkas 45, Z Szillasi 45, J Karancsi 46, P Raics 46, Z L Trocsanyi 46, B Ujvari 46, S K Swain 47, S B Beri 48, V Bhatnagar 48, N Dhingra 48, R Gupta 48, M Kaur 48, M Z Mehta 48, M Mittal 48, N Nishu 48, A Sharma 48,120, J B Singh 48, Ashok Kumar 49, Arun Kumar 49, S Ahuja 49, A Bhardwaj 49, B C Choudhary 49, A Kumar 49,166, S Malhotra 49, M Naimuddin 49, K Ranjan 49, P Saxena 49, V Sharma 49,143, R K Shivpuri 49, S Banerjee 50,53, S Bhattacharya 50,139, K Chatterjee 50, S Dutta 50, B Gomber 50, Sa Jain 50, Sh Jain 50, R Khurana 50, A Modak 50, S Mukherjee 50, D Roy 50, S Sarkar 50, M Sharan 50, A P Singh 50, A Abdulsalam 51, D Dutta 51, S Kailas 51, V Kumar 51, A K Mohanty 51, L M Pant 51, P Shukla 51, A Topkar 51, T Aziz 52, R M Chatterjee 52, S Ganguly 52, S Ghosh 52, M Guchait 52, A Gurtu 52, G Kole 52, S Kumar 52, M Maity 52, G Majumder 52, K Mazumdar 52, G B Mohanty 52, B Parida 52, K Sudhakar 52, N Wickramage 52, S Dugad 53, H Arfaei 54, H Bakhshiansohi 54, S M Etesami 54, A Fahim 54, A Jafari 54, M Khakzad 54, M Mohammadi Najafabadi 54, S Paktinat Mehdiabadi 54, B Safarzadeh 54, M Zeinali 54, M Grunewald 55, M Abbrescia 56,57, L Barbone 56,57, C Calabria 56,57, S S Chhibra 56,57, A Colaleo 56, D Creanza 56,58, N De Filippis 56,58, M De Palma 56,57, L Fiore 56, G Iaselli 56,58, G Maggi 56,58, M Maggi 56, B Marangelli 56,57, S My 56,58, S Nuzzo 56,57, N Pacifico 56, A Pompili 56,57, G Pugliese 56,58, G Selvaggi 56,57, L Silvestris 56, G Singh 56,57, R Venditti 56,57, P Verwilligen 56, G Zito 56, G Abbiendi 59, A C Benvenuti 59, D Bonacorsi 59,60, S Braibant-Giacomelli 59,60, L Brigliadori 59,60, R Campanini 59,60, P Capiluppi 59,60, A Castro 59,60, F R Cavallo 59, G Codispoti 59,60, M Cuffiani 59,60, G M Dallavalle 59, F Fabbri 59, A Fanfani 59,60, D Fasanella 59,60, P Giacomelli 59, C Grandi 59, L Guiducci 59,60, S Marcellini 59, G Masetti 59, M Meneghelli 59,60, A Montanari 59, F L Navarria 59,60, F Odorici 59, A Perrotta 59, F Primavera 59,60, A M Rossi 59,60, T Rovelli 59,60, G P Siroli 59,60, N Tosi 59,60, R Travaglini 59,60, S Albergo 61,62, G Cappello 61,62, M Chiorboli 61,62, S Costa 61,62, F Giordano 61, R Potenza 61,62, A Tricomi 61,62, C Tuve 61,62, G Barbagli 63, V Ciulli 63,64, C Civinini 63, R D’Alessandro 63,64, E Focardi 63,64, S Frosali 63,64, E Gallo 63, S Gonzi 63,64, V Gori 63,64, P Lenzi 63,64, M Meschini 63, S Paoletti 63, G Sguazzoni 63, A Tropiano 63,64, L Benussi 65, S Bianco 65, F Fabbri 65, D Piccolo 65, P Fabbricatore 66, R Ferretti 66,67, F Ferro 66, M Lo Vetere 66,67, R Musenich 66, E Robutti 66, S Tosi 66,67, A Benaglia 68, M E Dinardo 68,69, S Fiorendi 68,69, S Gennai 68, A Ghezzi 68,69, P Govoni 68,69, M T Lucchini 68,69, S Malvezzi 68, R A Manzoni 68,69, A Martelli 68,69, D Menasce 68, L Moroni 68, M Paganoni 68,69, D Pedrini 68, S Ragazzi 68,69, N Redaelli 68, T Tabarelli de Fatis 68,69, S Buontempo 70, N Cavallo 70,72, A De Cosa 70,71, F Fabozzi 70,72, A O M Iorio 70,71, L Lista 70, S Meola 70,73, M Merola 70, P Paolucci 70, P Azzi 74, N Bacchetta 74, M Bellato 74, D Bisello 74,75, A Branca 74,75, R Carlin 74,75, P Checchia 74, T Dorigo 74, U Dosselli 74, M Galanti 74,75, F Gasparini 74,75, U Gasparini 74,75, P Giubilato 74,75, A Gozzelino 74, K Kanishchev 74,76, S Lacaprara 74, I Lazzizzera 74,76, M Margoni 74,75, A T Meneguzzo 74,75, J Pazzini 74,75, N Pozzobon 74,75, P Ronchese 74,75, M Sgaravatto 74, F Simonetto 74,75, E Torassa 74, M Tosi 74,75, A Triossi 74, P Zotto 74,75, A Zucchetta 74,75, G Zumerle 74,75, M Gabusi 77,78, S P Ratti 77,78, C Riccardi 77,78, P Vitulo 77,78, M Biasini 79,80, G M Bilei 79, L Fanò 79,80, P Lariccia 79,80, G Mantovani 79,80, M Menichelli 79, A Nappi 79,80, F Romeo 79,80, A Saha 79, A Santocchia 79,80, A Spiezia 79,80, K Androsov 81, P Azzurri 81, G Bagliesi 81, J Bernardini 81, T Boccali 81, G Broccolo 81,83, R Castaldi 81, M A Ciocci 81, R T D’Agnolo 81,83, R Dell’Orso 81, F Fiori 81,83, L Foà 81,83, A Giassi 81, M T Grippo 81, A Kraan 81, F Ligabue 81,83, T Lomtadze 81, L Martini 81, A Messineo 81,82, C S Moon 81, F Palla 81, A Rizzi 81,82, A Savoy-Navarro 81, A T Serban 81, P Spagnolo 81, P Squillacioti 81, R Tenchini 81, G Tonelli 81,82, A Venturi 81, P G Verdini 81, C Vernieri 81,83, L Barone 84,85, F Cavallari 84, D Del Re 84,85, M Diemoz 84, M Grassi 84,85, E Longo 84,85, F Margaroli 84,85, P Meridiani 84, F Micheli 84,85, S Nourbakhsh 84,85, G Organtini 84,85, R Paramatti 84, S Rahatlou 84,85, C Rovelli 84, L Soffi 84,85, N Amapane 86,87, R Arcidiacono 86,88, S Argiro 86,87, M Arneodo 86,88, R Bellan 86,87, C Biino 86, N Cartiglia 86, S Casasso 86,87, M Costa 86,87, A Degano 86,87, N Demaria 86, C Mariotti 86, S Maselli 86, E Migliore 86,87, V Monaco 86,87, M Musich 86, M M Obertino 86,88, N Pastrone 86, M Pelliccioni 86, A Potenza 86,87, A Romero 86,87, M Ruspa 86,88, R Sacchi 86,87, A Solano 86,87, A Staiano 86, U Tamponi 86, S Belforte 89, V Candelise 89,90, M Casarsa 89, F Cossutti 89, G Della Ricca 89,90, B Gobbo 89, C La Licata 89,90, M Marone 89,90, D Montanino 89,90, A Penzo 89, A Schizzi 89,90, A Zanetti 89, S Chang 91, T Y Kim 91, S K Nam 91, D H Kim 92, G N Kim 92, J E Kim 92, D J Kong 92, S Lee 92,96, Y D Oh 92, H Park 92, D C Son 92, J Y Kim 93, Zero J Kim 93, S Song 93, S Choi 94, D Gyun 94, B Hong 94, M Jo 94, H Kim 94, T J Kim 94, K S Lee 94, S K Park 94, Y Roh 94, M Choi 95, J H Kim 95, C Park 95, I C Park 95, S Park 95, G Ryu 95, Y Choi 96, Y K Choi 96, J Goh 96, M S Kim 96, E Kwon 96, B Lee 96, J Lee 96, H Seo 96, I Yu 96, I Grigelionis 97, A Juodagalvis 97, H Castilla-Valdez 98, E De La Cruz-Burelo 98, I Heredia-de La Cruz 98, R Lopez-Fernandez 98, J Martínez-Ortega 98, A Sanchez-Hernandez 98, L M Villasenor-Cendejas 98, S Carrillo Moreno 99, F Vazquez Valencia 99, H A Salazar Ibarguen 100, E Casimiro Linares 101, A Morelos Pineda 101, M A Reyes-Santos 101, D Krofcheck 102, P H Butler 103, R Doesburg 103, S Reucroft 103, H Silverwood 103, M Ahmad 104, M I Asghar 104, J Butt 104, H R Hoorani 104, S Khalid 104, W A Khan 104, T Khurshid 104, S Qazi 104, M A Shah 104, M Shoaib 104, H Bialkowska 105, B Boimska 105, T Frueboes 105, M Górski 105, M Kazana 105, K Nawrocki 105, K Romanowska-Rybinska 105, M Szleper 105, G Wrochna 105, P Zalewski 105, G Brona 106, K Bunkowski 106, M Cwiok 106, W Dominik 106, K Doroba 106, A Kalinowski 106, M Konecki 106, J Krolikowski 106, M Misiura 106, W Wolszczak 106, N Almeida 107, P Bargassa 107, C Beirão Da Cruz E Silva 107, P Faccioli 107, P G Ferreira Parracho 107, M Gallinaro 107, F Nguyen 107, J Rodrigues Antunes 107, J Seixas 107, J Varela 107, P Vischia 107, S Afanasiev 108, P Bunin 108, M Gavrilenko 108, I Golutvin 108, I Gorbunov 108, A Kamenev 108, V Karjavin 108, V Konoplyanikov 108, A Lanev 108, A Malakhov 108, V Matveev 108, P Moisenz 108, V Palichik 108, V Perelygin 108, S Shmatov 108, N Skatchkov 108, V Smirnov 108, A Zarubin 108, S Evstyukhin 109, V Golovtsov 109, Y Ivanov 109, V Kim 109, P Levchenko 109, V Murzin 109, V Oreshkin 109, I Smirnov 109, V Sulimov 109, L Uvarov 109, S Vavilov 109, A Vorobyev 109, An Vorobyev 109, Yu Andreev 110, A Dermenev 110, S Gninenko 110, N Golubev 110, M Kirsanov 110, N Krasnikov 110, A Pashenkov 110, D Tlisov 110, A Toropin 110, V Epshteyn 111, M Erofeeva 111, V Gavrilov 111, N Lychkovskaya 111, V Popov 111, G Safronov 111, S Semenov 111, A Spiridonov 111, V Stolin 111, E Vlasov 111, A Zhokin 111, V Andreev 112, M Azarkin 112, I Dremin 112, M Kirakosyan 112, A Leonidov 112, G Mesyats 112, S V Rusakov 112, A Vinogradov 112, E Boos 113, M Dubinin 113, L Dudko 113, A Ershov 113, A Gribushin 113, V Klyukhin 113, O Kodolova 113, I Lokhtin 113, A Markina 113, S Obraztsov 113, S Petrushanko 113, V Savrin 113, A Snigirev 113, I Azhgirey 114, I Bayshev 114, S Bitioukov 114, V Kachanov 114, A Kalinin 114, D Konstantinov 114, V Krychkine 114, V Petrov 114, R Ryutin 114, A Sobol 114, L Tourtchanovitch 114, S Troshin 114, N Tyurin 114, A Uzunian 114, A Volkov 114, P Adzic 115, M Djordjevic 115, M Ekmedzic 115, D Krpic 115, J Milosevic 115, M Aguilar-Benitez 116, J Alcaraz Maestre 116, C Battilana 116, E Calvo 116, M Cerrada 116, M Chamizo Llatas 116, N Colino 116, B De La Cruz 116, A Delgado Peris 116, D Domínguez Vázquez 116, C Fernandez Bedoya 116, J P Fernández Ramos 116, A Ferrando 116, J Flix 116, M C Fouz 116, P Garcia-Abia 116, O Gonzalez Lopez 116, S Goy Lopez 116, J M Hernandez 116, M I Josa 116, G Merino 116, E Navarro De Martino 116, J Puerta Pelayo 116, A Quintario Olmeda 116, I Redondo 116, L Romero 116, J Santaolalla 116, M S Soares 116, C Willmott 116, C Albajar 117, J F de Trocóniz 117, H Brun 118, J Cuevas 118, J Fernandez Menendez 118, S Folgueras 118, I Gonzalez Caballero 118, L Lloret Iglesias 118, J Piedra Gomez 118, J A Brochero Cifuentes 119, I J Cabrillo 119, A Calderon 119, S H Chuang 119, J Duarte Campderros 119, M Fernandez 119, G Gomez 119, J Gonzalez Sanchez 119, A Graziano 119, C Jorda 119, A Lopez Virto 119, J Marco 119, R Marco 119, C Martinez Rivero 119, F Matorras 119, F J Munoz Sanchez 119, T Rodrigo 119, A Y Rodríguez-Marrero 119, A Ruiz-Jimeno 119, L Scodellaro 119, I Vila 119, R Vilar Cortabitarte 119, D Abbaneo 120, E Auffray 120, G Auzinger 120, M Bachtis 120, P Baillon 120, A H Ball 120, D Barney 120, J Bendavid 120, J F Benitez 120, C Bernet 120, G Bianchi 120, P Bloch 120, A Bocci 120, A Bonato 120, O Bondu 120, C Botta 120, H Breuker 120, T Camporesi 120, G Cerminara 120, T Christiansen 120, J A Coarasa Perez 120, S Colafranceschi 120, M D’Alfonso 120, D d’Enterria 120, A Dabrowski 120, A David 120, F De Guio 120, A De Roeck 120, S De Visscher 120, S Di Guida 120, M Dobson 120, N Dupont-Sagorin 120, A Elliott-Peisert 120, J Eugster 120, G Franzoni 120, W Funk 120, G Georgiou 120, M Giffels 120, D Gigi 120, K Gill 120, D Giordano 120, M Girone 120, M Giunta 120, F Glege 120, R Gomez-Reino Garrido 120, S Gowdy 120, R Guida 120, J Hammer 120, M Hansen 120, P Harris 120, C Hartl 120, A Hinzmann 120, V Innocente 120, P Janot 120, E Karavakis 120, K Kousouris 120, K Krajczar 120, P Lecoq 120, Y-J Lee 120, C Lourenço 120, N Magini 120, L Malgeri 120, M Mannelli 120, L Masetti 120, F Meijers 120, S Mersi 120, E Meschi 120, R Moser 120, M Mulders 120, P Musella 120, E Nesvold 120, L Orsini 120, E Palencia Cortezon 120, E Perez 120, L Perrozzi 120, A Petrilli 120, A Pfeiffer 120, M Pierini 120, M Pimiä 120, D Piparo 120, M Plagge 120, L Quertenmont 120, A Racz 120, W Reece 120, G Rolandi 120, M Rovere 120, H Sakulin 120, F Santanastasio 120, C Schäfer 120, C Schwick 120, S Sekmen 120, P Siegrist 120, P Silva 120, M Simon 120, P Sphicas 120, D Spiga 120, B Stieger 120, M Stoye 120, A Tsirou 120, G I Veres 120, J R Vlimant 120, H K Wöhri 120, S D Worm 120, W D Zeuner 120, W Bertl 121, K Deiters 121, W Erdmann 121, K Gabathuler 121, R Horisberger 121, Q Ingram 121, H C Kaestli 121, S König 121, D Kotlinski 121, U Langenegger 121, D Renker 121, T Rohe 121, F Bachmair 122, L Bäni 122, L Bianchini 122, P Bortignon 122, M A Buchmann 122, B Casal 122, N Chanon 122, A Deisher 122, G Dissertori 122, M Dittmar 122, M Donegà 122, M Dünser 122, P Eller 122, K Freudenreich 122, C Grab 122, D Hits 122, P Lecomte 122, W Lustermann 122, B Mangano 122, A C Marini 122, P Martinez Ruiz del Arbol 122, D Meister 122, N Mohr 122, F Moortgat 122, C Nägeli 122, P Nef 122, F Nessi-Tedaldi 122, F Pandolfi 122, L Pape 122, F Pauss 122, M Peruzzi 122, M Quittnat 122, F J Ronga 122, M Rossini 122, L Sala 122, A K Sanchez 122, A Starodumov 122, M Takahashi 122, L Tauscher 122, A Thea 122, K Theofilatos 122, D Treille 122, C Urscheler 122, R Wallny 122, H A Weber 122, C Amsler 123, V Chiochia 123, C Favaro 123, M Ivova Rikova 123, B Kilminster 123, B Millan Mejias 123, P Otiougova 123, P Robmann 123, H Snoek 123, S Taroni 123, M Verzetti 123, Y Yang 123, M Cardaci 124, K H Chen 124, C Ferro 124, C M Kuo 124, S W Li 124, W Lin 124, Y J Lu 124, R Volpe 124, S S Yu 124, P Bartalini 125, P Chang 125, Y H Chang 125, Y W Chang 125, Y Chao 125, K F Chen 125, C Dietz 125, U Grundler 125, W-S Hou 125, Y Hsiung 125, K Y Kao 125, Y J Lei 125, R-S Lu 125, D Majumder 125, E Petrakou 125, X Shi 125, J G Shiu 125, Y M Tzeng 125, M Wang 125, B Asavapibhop 126, N Suwonjandee 126, A Adiguzel 127, M N Bakirci 127, S Cerci 127, C Dozen 127, I Dumanoglu 127, E Eskut 127, S Girgis 127, G Gokbulut 127, E Gurpinar 127, I Hos 127, E E Kangal 127, A Kayis Topaksu 127, G Onengut 127, K Ozdemir 127, S Ozturk 127, A Polatoz 127, K Sogut 127, D Sunar Cerci 127, B Tali 127, H Topakli 127, M Vergili 127, I V Akin 128, T Aliev 128, B Bilin 128, S Bilmis 128, M Deniz 128, H Gamsizkan 128, A M Guler 128, G Karapinar 128, K Ocalan 128, A Ozpineci 128, M Serin 128, R Sever 128, U E Surat 128, M Yalvac 128, M Zeyrek 128, E Gülmez 129, B Isildak 129, M Kaya 129, O Kaya 129, S Ozkorucuklu 129, N Sonmez 129, H Bahtiyar 130, E Barlas 130, K Cankocak 130, Y O Günaydin 130, F I Vardarlı 130, M Yücel 130, L Levchuk 131, P Sorokin 131, J J Brooke 132, E Clement 132, D Cussans 132, H Flacher 132, R Frazier 132, J Goldstein 132, M Grimes 132, G P Heath 132, H F Heath 132, L Kreczko 132, C Lucas 132, Z Meng 132, S Metson 132, D M Newbold 132, K Nirunpong 132, S Paramesvaran 132, A Poll 132, S Senkin 132, V J Smith 132, T Williams 132, K W Bell 133, A Belyaev 113,133, C Brew 133, R M Brown 133, D J A Cockerill 133, J A Coughlan 133, K Harder 133, S Harper 133, J Ilic 133, E Olaiya 133, D Petyt 133, B C Radburn-Smith 133, C H Shepherd-Themistocleous 133, I R Tomalin 133, W J Womersley 133, R Bainbridge 134, O Buchmuller 134, D Burton 134, D Colling 134, N Cripps 134, M Cutajar 134, P Dauncey 134, G Davies 134, M Della Negra 134, W Ferguson 134, J Fulcher 134, D Futyan 134, A Gilbert 134, A Guneratne Bryer 134, G Hall 134, Z Hatherell 134, J Hays 134, G Iles 134, M Jarvis 134, G Karapostoli 134, M Kenzie 134, R Lane 134, R Lucas 134, L Lyons 134, A-M Magnan 134, J Marrouche 134, B Mathias 134, R Nandi 134, J Nash 134, A Nikitenko 134, J Pela 134, M Pesaresi 134, K Petridis 134, M Pioppi 134, D M Raymond 134, S Rogerson 134, A Rose 134, C Seez 134, P Sharp 134, A Sparrow 134, A Tapper 134, M Vazquez Acosta 134, T Virdee 134, S Wakefield 134, N Wardle 134, M Chadwick 135, J E Cole 135, P R Hobson 135, A Khan 135, P Kyberd 135, D Leggat 135, D Leslie 135, W Martin 135, I D Reid 135, P Symonds 135, L Teodorescu 135, M Turner 135, J Dittmann 136, K Hatakeyama 136, A Kasmi 136, H Liu 136, T Scarborough 136, O Charaf 137, S I Cooper 137, C Henderson 137, P Rumerio 137, A Avetisyan 138, T Bose 138, C Fantasia 138, A Heister 138, P Lawson 138, D Lazic 138, J Rohlf 138, D Sperka 138, J St John 138, L Sulak 138, J Alimena 139, G Christopher 139, D Cutts 139, Z Demiragli 139, A Ferapontov 139, A Garabedian 139, U Heintz 139, S Jabeen 139, G Kukartsev 139, E Laird 139, G Landsberg 139, M Luk 139, M Narain 139, M Segala 139, T Sinthuprasith 139, T Speer 139, R Breedon 140, G Breto 140, M Calderon De La Barca Sanchez 140, S Chauhan 140, M Chertok 140, J Conway 140, R Conway 140, P T Cox 140, R Erbacher 140, M Gardner 140, R Houtz 140, W Ko 140, A Kopecky 140, R Lander 140, T Miceli 140, D Pellett 140, J Pilot 140, F Ricci-Tam 140, B Rutherford 140, M Searle 140, S Shalhout 140, J Smith 140, M Squires 140, M Tripathi 140, S Wilbur 140, R Yohay 140, V Andreev 141, D Cline 141, R Cousins 141, S Erhan 141, P Everaerts 141, C Farrell 141, M Felcini 141, J Hauser 141, M Ignatenko 141, C Jarvis 141, G Rakness 141, P Schlein 141, E Takasugi 141, P Traczyk 141, V Valuev 141, J Babb 142, R Clare 142, J Ellison 142, J W Gary 142, G Hanson 142, J Heilman 142, P Jandir 142, H Liu 142, O R Long 142, A Luthra 142, M Malberti 142, H Nguyen 142, A Shrinivas 142, J Sturdy 142, S Sumowidagdo 142, R Wilken 142, S Wimpenny 142, W Andrews 143, J G Branson 143, G B Cerati 143, S Cittolin 143, D Evans 143, A Holzner 143, R Kelley 143, M Lebourgeois 143, J Letts 143, I Macneill 143, S Padhi 143, C Palmer 143, G Petrucciani 143, M Pieri 143, M Sani 143, S Simon 143, E Sudano 143, M Tadel 143, Y Tu 143, A Vartak 143, S Wasserbaech 143, F Würthwein 143, A Yagil 143, J Yoo 143, D Barge 144, C Campagnari 144, T Danielson 144, K Flowers 144, P Geffert 144, C George 144, F Golf 144, J Incandela 144, C Justus 144, D Kovalskyi 144, V Krutelyov 144, R Magaña Villalba 144, N Mccoll 144, V Pavlunin 144, J Richman 144, R Rossin 144, D Stuart 144, W To 144, C West 144, A Apresyan 145, A Bornheim 145, J Bunn 145, Y Chen 145, E Di Marco 145, J Duarte 145, D Kcira 145, Y Ma 145, A Mott 145, H B Newman 145, C Pena 145, C Rogan 145, M Spiropulu 145, V Timciuc 145, J Veverka 145, R Wilkinson 145, S Xie 145, R Y Zhu 145, V Azzolini 146, A Calamba 146, R Carroll 146, T Ferguson 146, Y Iiyama 146, D W Jang 146, Y F Liu 146, M Paulini 146, J Russ 146, H Vogel 146, I Vorobiev 146, J P Cumalat 147, B R Drell 147, W T Ford 147, A Gaz 147, E Luiggi Lopez 147, U Nauenberg 147, J G Smith 147, K Stenson 147, K A Ulmer 147, S R Wagner 147, J Alexander 148, A Chatterjee 148, N Eggert 148, L K Gibbons 148, W Hopkins 148, A Khukhunaishvili 148, B Kreis 148, N Mirman 148, G Nicolas Kaufman 148, J R Patterson 148, A Ryd 148, E Salvati 148, W Sun 148, W D Teo 148, J Thom 148, J Thompson 148, J Tucker 148, Y Weng 148, L Winstrom 148, P Wittich 148, D Winn 149, S Abdullin 150, M Albrow 150, J Anderson 150, G Apollinari 150, L A T Bauerdick 150, A Beretvas 150, J Berryhill 150, P C Bhat 150, K Burkett 150, J N Butler 150, V Chetluru 150, H W K Cheung 150, F Chlebana 150, S Cihangir 150, V D Elvira 150, I Fisk 150, J Freeman 150, Y Gao 150, E Gottschalk 150, L Gray 150, D Green 150, O Gutsche 150, D Hare 150, R M Harris 150, J Hirschauer 150, B Hooberman 150, S Jindariani 150, M Johnson 150, U Joshi 150, K Kaadze 150, B Klima 150, S Kunori 150, S Kwan 150, J Linacre 150, D Lincoln 150, R Lipton 150, J Lykken 150, K Maeshima 150, J M Marraffino 150, V I Martinez Outschoorn 150, S Maruyama 150, D Mason 150, P McBride 150, K Mishra 150, S Mrenna 150, Y Musienko 150, C Newman-Holmes 150, V O’Dell 150, O Prokofyev 150, N Ratnikova 150, E Sexton-Kennedy 150, S Sharma 150, W J Spalding 150, L Spiegel 150, L Taylor 150, S Tkaczyk 150, N V Tran 150, L Uplegger 150, E W Vaandering 150, R Vidal 150, J Whitmore 150, W Wu 150, F Yang 150, J C Yun 150, D Acosta 151, P Avery 151, D Bourilkov 151, M Chen 151, T Cheng 151, S Das 151, M De Gruttola 151, G P Di Giovanni 151, D Dobur 151, A Drozdetskiy 151, R D Field 151, M Fisher 151, Y Fu 151, I K Furic 151, J Hugon 151, B Kim 151, J Konigsberg 151, A Korytov 151, A Kropivnitskaya 151, T Kypreos 151, J F Low 151, K Matchev 151, P Milenovic 151, G Mitselmakher 151, L Muniz 151, R Remington 151, A Rinkevicius 151, N Skhirtladze 151, M Snowball 151, J Yelton 151, M Zakaria 151, V Gaultney 152, S Hewamanage 152, S Linn 152, P Markowitz 152, G Martinez 152, J L Rodriguez 152, T Adams 153, A Askew 153, J Bochenek 153, J Chen 153, B Diamond 153, J Haas 153, S Hagopian 153, V Hagopian 153, K F Johnson 153, H Prosper 153, V Veeraraghavan 153, M Weinberg 153, M M Baarmand 154, B Dorney 154, M Hohlmann 154, H Kalakhety 154, F Yumiceva 154, M R Adams 155, L Apanasevich 155, V E Bazterra 155, R R Betts 155, I Bucinskaite 155, J Callner 155, R Cavanaugh 155, O Evdokimov 155, L Gauthier 155, C E Gerber 155, D J Hofman 155, S Khalatyan 155, P Kurt 155, F Lacroix 155, D H Moon 155, C O’Brien 155, C Silkworth 155, D Strom 155, P Turner 155, N Varelas 155, U Akgun 156, E A Albayrak 156, B Bilki 156, W Clarida 156, K Dilsiz 156, F Duru 156, S Griffiths 156, J-P Merlo 156, H Mermerkaya 156, A Mestvirishvili 156, A Moeller 156, J Nachtman 156, C R Newsom 156, H Ogul 156, Y Onel 156, F Ozok 156, S Sen 156, P Tan 156, E Tiras 156, J Wetzel 156, T Yetkin 156, K Yi 156, B A Barnett 157, B Blumenfeld 157, S Bolognesi 157, G Giurgiu 157, A V Gritsan 157, G Hu 157, P Maksimovic 157, C Martin 157, M Swartz 157, A Whitbeck 157, P Baringer 158, A Bean 158, G Benelli 158, R P Kenny III 158, M Murray 158, D Noonan 158, S Sanders 158, R Stringer 158, J S Wood 158, A F Barfuss 159, I Chakaberia 159, A Ivanov 159, S Khalil 159, M Makouski 159, Y Maravin 159, L K Saini 159, S Shrestha 159, I Svintradze 159, J Gronberg 160, D Lange 160, F Rebassoo 160, D Wright 160, A Baden 161, B Calvert 161, S C Eno 161, J A Gomez 161, N J Hadley 161, R G Kellogg 161, T Kolberg 161, Y Lu 161, M Marionneau 161, A C Mignerey 161, K Pedro 161, A Peterman 161, A Skuja 161, J Temple 161, M B Tonjes 161, S C Tonwar 161, A Apyan 162, G Bauer 162, W Busza 162, I A Cali 162, M Chan 162, L Di Matteo 162, V Dutta 162, G Gomez Ceballos 162, M Goncharov 162, D Gulhan 162, Y Kim 162, M Klute 162, Y S Lai 162, A Levin 162, P D Luckey 162, T Ma 162, S Nahn 162, C Paus 162, D Ralph 162, C Roland 162, G Roland 162, G S F Stephans 162, F Stöckli 162, K Sumorok 162, D Velicanu 162, R Wolf 162, B Wyslouch 162, M Yang 162, Y Yilmaz 162, A S Yoon 162, M Zanetti 162, V Zhukova 162, B Dahmes 163, A De Benedetti 163, A Gude 163, J Haupt 163, S C Kao 163, K Klapoetke 163, Y Kubota 163, J Mans 163, N Pastika 163, R Rusack 163, M Sasseville 163, A Singovsky 163, N Tambe 163, J Turkewitz 163, J G Acosta 164, L M Cremaldi 164, R Kroeger 164, S Oliveros 164, L Perera 164, R Rahmat 164, D A Sanders 164, D Summers 164, E Avdeeva 165, K Bloom 165, S Bose 165, D R Claes 165, A Dominguez 165, M Eads 165, R Gonzalez Suarez 165, J Keller 165, I Kravchenko 165, J Lazo-Flores 165, S Malik 165,177, F Meier 165, G R Snow 165, J Dolen 166, A Godshalk 166, I Iashvili 166, S Jain 166, A Kharchilava 166, S Rappoccio 166, Z Wan 166, G Alverson 167, E Barberis 167, D Baumgartel 167, M Chasco 167, J Haley 167, A Massironi 167, D Nash 167, T Orimoto 167, D Trocino 167, D Wood 167, J Zhang 167, A Anastassov 168, K A Hahn 168, A Kubik 168, L Lusito 168, N Mucia 168, N Odell 168, B Pollack 168, A Pozdnyakov 168, M Schmitt 168, S Stoynev 168, K Sung 168, M Velasco 168, S Won 168, D Berry 169, A Brinkerhoff 169, K M Chan 169, M Hildreth 169, C Jessop 169, D J Karmgard 169, J Kolb 169, K Lannon 169, W Luo 169, S Lynch 169, N Marinelli 169, D M Morse 169, T Pearson 169, M Planer 169, R Ruchti 169, J Slaunwhite 169, N Valls 169, M Wayne 169, M Wolf 169, L Antonelli 170, B Bylsma 170, L S Durkin 170, C Hill 170, R Hughes 170, K Kotov 170, T Y Ling 170, D Puigh 170, M Rodenburg 170, G Smith 170, C Vuosalo 170, B L Winer 170, H Wolfe 170, E Berry 171, P Elmer 171, V Halyo 171, P Hebda 171, J Hegeman 171, A Hunt 171, P Jindal 171, S A Koay 171, P Lujan 171, D Marlow 171, T Medvedeva 171, M Mooney 171, J Olsen 171, P Piroué 171, X Quan 171, A Raval 171, H Saka 171, D Stickland 171, C Tully 171, J S Werner 171, S C Zenz 171, A Zuranski 171, E Brownson 172, A Lopez 172, H Mendez 172, J E Ramirez Vargas 172, E Alagoz 173, D Benedetti 173, G Bolla 173, D Bortoletto 173, M De Mattia 173, A Everett 173, Z Hu 173, M Jones 173, K Jung 173, O Koybasi 173, M Kress 173, N Leonardo 173, D Lopes Pegna 173, V Maroussov 173, P Merkel 173, D H Miller 173, N Neumeister 173, I Shipsey 173, D Silvers 173, A Svyatkovskiy 173, F Wang 173, W Xie 173, L Xu 173, H D Yoo 173, J Zablocki 173, Y Zheng 173, N Parashar 174, A Adair 175, B Akgun 175, K M Ecklund 175, F J M Geurts 175, W Li 175, B Michlin 175, B P Padley 175, R Redjimi 175, J Roberts 175, J Zabel 175, B Betchart 176, A Bodek 176, R Covarelli 176, P de Barbaro 176, R Demina 176, Y Eshaq 176, T Ferbel 176, A Garcia-Bellido 176, P Goldenzweig 176, J Han 176, A Harel 176, D C Miner 176, G Petrillo 176, D Vishnevskiy 176, M Zielinski 176, A Bhatti 177, R Ciesielski 177, L Demortier 177, K Goulianos 177, G Lungu 177, S Malik 177, C Mesropian 177, S Arora 178, A Barker 178, J P Chou 178, C Contreras-Campana 178, E Contreras-Campana 178, D Duggan 178, D Ferencek 178, Y Gershtein 178, R Gray 178, E Halkiadakis 178, D Hidas 178, A Lath 178, S Panwalkar 178, M Park 178, R Patel 178, V Rekovic 178, J Robles 178, S Salur 178, S Schnetzer 178, C Seitz 178, S Somalwar 178, R Stone 178, S Thomas 178, P Thomassen 178, M Walker 178, G Cerizza 179, M Hollingsworth 179, K Rose 179, S Spanier 179, Z C Yang 179, A York 179, O Bouhali 180, R Eusebi 180, W Flanagan 180, J Gilmore 180, T Kamon 180, V Khotilovich 180, R Montalvo 180, I Osipenkov 180, Y Pakhotin 180, A Perloff 180, J Roe 180, A Safonov 180, T Sakuma 180, I Suarez 180, A Tatarinov 180, D Toback 180, N Akchurin 181, C Cowden 181, J Damgov 181, C Dragoiu 181, P R Dudero 181, K Kovitanggoon 181, S W Lee 181, T Libeiro 181, I Volobouev 181, E Appelt 182, A G Delannoy 182, S Greene 182, A Gurrola 182, W Johns 182, C Maguire 182, A Melo 182, M Sharma 182, P Sheldon 182, B Snook 182, S Tuo 182, J Velkovska 182, M W Arenton 183, S Boutle 183, B Cox 183, B Francis 183, J Goodell 183, R Hirosky 183, A Ledovskoy 183, C Lin 183, C Neu 183, J Wood 183, S Gollapinni 184, R Harr 184, P E Karchin 184, C Kottachchi Kankanamge Don 184, P Lamichhane 184, A Sakharov 184, D A Belknap 185, L Borrello 185, D Carlsmith 185, M Cepeda 185, S Dasu 185, S Duric 185, E Friis 185, M Grothe 185, R Hall-Wilton 185, M Herndon 185, A Hervé 185, P Klabbers 185, J Klukas 185, A Lanaro 185, R Loveless 185, A Mohapatra 185, I Ojalvo 185, T Perry 185, G A Pierro 185, G Polese 185, I Ross 185, T Sarangi 185, A Savin 185, W H Smith 185, J Swanson 185
PMCID: PMC4370765  PMID: 25814895

Abstract

A study of color coherence effects in pp collisions at a center-of-mass energy of 7TeV is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 pb-1. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementations of color coherence. None of the models describe the data satisfactorily.

Introduction

An important feature of the color interaction in quantum chromodynamics (QCD) is that the outgoing partons produced in the hard interaction continue to interfere with each other during their fragmentation phase. This phenomenon, called color coherence, manifests itself by the relative abundance of soft radiation in the region between the color connected final-state partons and the suppression of soft radiation elsewhere.

Color coherence phenomena were initially observed in e+e- collisions by several experiments at PETRA, PEP and LEP [18]. These experiments showed the coherence effect in e+e-qq¯g three-jet events through the suppression of particle production in the region between the quark and antiquark jets.

In hadron collisions, in addition to the color connection between the final-state partons, the color connection between the outgoing partons and the incoming partons must be considered. The Tevatron experiments CDF and D0 have both reported evidence for color coherence effects in measurements of the spatial correlations between neighboring jets [9, 10]. These correlations were not well reproduced by Monte Carlo (MC) simulations that use incoherent parton shower models. However, the data were successfully described by simulations that include color coherence effects through the ordering of the parton emission angles [11].

The technique originally developed by the Tevatron experiments is used to study color coherence effects in pp collisions at s=7 TeV with the Compact Muon Solenoid (CMS) detector. Events with at least three jets (called three-jet events) are selected, and these jets are ordered by their transverse momenta pT1>pT2>pT3 with respect to the beam direction. We measure the angular correlation between the second and third jet to probe the effects of color coherence.

The CMS detector has a right-handed coordinate system with its origin at the center of the detector. The z axis points along the direction of the counterclockwise beam, ϕ is the azimuthal angle in the transverse plane perpendicular to the beam, and θ is the polar angle relative to the z axis. The pseudorapidity of the ith jet is denoted by ηi=-ln[tan(θi/2)] and its azimuthal angle by ϕi.

The measured observable β [10] is defined as the azimuthal angle of the third jet with respect to the second jet in (η,ϕ) space as shown in Fig. 1. Implicitly, this can be expressed by

tanβ=|Δϕ23|Δη23, 1

where Δϕ23=ϕ3-ϕ2 (defined so that -πΔϕ23π), Δη23=sign(η2)·(η3-η2), and 0βπ. The absolute value of Δϕ23 in Eq. 1 and the sign of the pseudorapidity of the second jet, sign(η2), in the definition of Δη23 are introduced to map symmetric configurations around Δϕ23=0 or η=0 onto the same β value. For Δϕ23=0, β is defined to be zero or π depending on the sign of Δη23 being positive or negative. In the case of Δη23=0, which cannot happen simultaneously with Δϕ23=0, β is defined to equal π/2.

Fig. 1.

Fig. 1

Visualization of the observable β in (η,ϕ) space using a simulated three-jet event. The sizes of the rectangular boxes are proportional to the particle energies

In a naive leading-order model the two partons are produced back-to-back in the transverse plane. One of the two partons may radiate a third parton. In the absence of color coherence effects there is no preferred direction of emission of this third parton around the radiating parton. In contrast, when color coherence effects are present, the third parton will tend to lie in the event plane defined by the emitting parton and the beam axis. Therefore, in the presence of color coherence, the third jet population along the event plane (in particular near β0) will be enhanced and out of the plane (βπ/2) will be suppressed. The color coherence effects are expected to become stronger in the region between the second jet and the remnant when the angle between them becomes smaller. Therefore the study of the β variable is performed in two situations: when the second jet is rather central (|η2|0.8) and when the second jet is more forward (0.8<|η2|2.5).

The aims of this paper are

  • To measure the β distributions, normalized to the total number of events in each region, as a function of β separately in the central (|η2|0.8) and forward region (0.8<|η2|2.5):
    Fη2,i(β)=Nη,iNη, 2
    where Nη is the total number of events in the η2 region, Nη,i the number of events in the given ith β bin of the η2 region. The choice of this normalization significantly reduces the impact of experimental systematic uncertainties such as the uncertainty in the luminosity.
  • To gauge the sensitivity of the variable β to color coherence effects.

  • To compare our measurements to the predictions of MC event generators with various implementations of color coherence.

The CMS detector

A detailed description of the CMS experiment can be found elsewhere [12]; so here we describe the detector systems most relevant to the present analysis. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume, a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter and a brass/scintillator hadron calorimeter (HCAL) are installed. The central tracking system provides coverage up to |η|=2.5 in pseudorapidity and the calorimeters up to |η|=3.0. An iron and quartz-fiber Cherenkov forward hadron calorimeter (HF) covers the pseudorapidity range 3.0<|η|<5.0.

Event selection

The CMS detector records events using a two-level trigger system consisting of a hardware-based level-1 (L1) trigger and a software-based high-level trigger (HLT). For this study, single jet triggers that reconstruct jets from calorimeter energy deposits at L1 and HLT are used to select events based on different pT jet thresholds. Five different triggers with pT thresholds of 30, 50, 70, 100, and 140GeV are used to select the events. The triggers were prescaled during the 2010 run when the associated rate exceeded the allocated band width except the highest-threshold one. Therefore, the events are split into five different bins in pT1 with each bin containing the events collected during a period when the appropriate trigger was not prescaled. Each bin starts at pTmin defined in such a way that the associated trigger efficiency exceeds 99 %. Table 2 lists the binning in pT1, and, for each bin, it gives the associated trigger, the number of selected events, and the integrated luminosity for the period during which the given trigger was not prescaled.

Table 2.

The binning in pT1 and, for each bin, the associated trigger, the integrated luminosity for the period during which the given trigger was not prescaled, and the number of selected events. The selection criteria are described in Table 1

pT1 bin edges Trigger online Lint Number of events
(GeV ) threshold (GeV ) (pb-1)
Total |η2|0.8 0.8<|η2|2.5
100–120 30 0.35 4511 1671 2840
120–160 50 4.5 67 086 27 069 40 017
160–200 70 9.2 50 071 23 055 27 016
200–250 100 20 39 464 18 987 20 477
>250 140 36 31 999 16 728 15 271
All 193 131 87 510 105 621

Jets are reconstructed with the anti-kT algorithm [13], which is implemented in the FastJet package [14] using a distance parameter R=0.5, from a list of particle candidates reconstructed using the particle-flow (PF) algorithm. This PF algorithm [15] reconstructs all particle candidates in each event using an optimized combination of information from all CMS subdetector systems: muons, electrons (with associated bremsstrahlung photons), photons (unconverted and converted), and charged/neutral hadrons. The four-vectors of the

neutral particles are computed by assuming that they come from the primary vertex, which is defined as the vertex with the highest sum of transverse momenta of all reconstructed tracks pointing to it. The reconstructed jet energy E is defined as the scalar sum of the energies of the constituents, and the jet momentum p is the vector sum of the momenta of the constituents. The jet transverse momentum pT is the component of p perpendicular to the beam. The E and p values of a reconstructed jet are further corrected for the response of the detector, which is obtained from MC simulations, test beam results, and pp collision data [16, 17]. The corrections account for the presence of multiple pp collisions in the same or adjacent bunch crossings (pileup interactions) using the jet area method [18].

Events are required to have a primary vertex reconstructed within 24 cm of the detector center along the beam line [19]. Additional selection criteria are applied to each event to remove any spurious jet-like features originating from isolated noise patterns in certain HCAL regions [20]. Events having at least three jets with pT>30 GeV are selected. The pseudorapidity of the two leading jets must be within |η1|,|η2|2.5, while for the third jet no constraints are applied in order to avoid a bias in the β measurement.

To further reduce the background from misidentified jets, i.e., jets resulting from noise in the electromagnetic, hadron and/or hadron forward calorimeters, a set of tight identification criteria are applied: each jet should contain at least two particles, one of which is a charged hadron, and the jet energy fraction carried by neutral hadrons, photons, muons, and electrons should be less than 90 %. With these criteria the contamination of the sample with misidentified jets is suppressed to a level less than 1 % [15].

The dijet invariant mass of the two leading jets, M12, is required to exceed 220 GeV to ensure a back-to-back configuration. With this requirement more than 98 % of the events have |Δϕ12-π|<1. Finally the distance in the (η,ϕ) space between the second and third jets is constrained to be 0.5<ΔR23=(Δη23)2+(Δϕ23)2<1.5 in order to ensure a three-jet topology where the third jet is closer to the second jet.

The selections used in the analysis are summarized in Table 1. The numbers of events passing the selection criteria in each pT1 bin are summarized in Table 2. The measured Δη23 and Δϕ23 distributions are compared to various MC models in Figs. 2 and 3. In general a reasonable agreement is observed with the different models. A study of the amount of energy collected by the HF detector indicated that there is no diffractive component in the data sample.

Table 1.

Summary of the event selection

Selection criteria
pT1>100 GeV, pT3>30 GeV
|η1|,|η2|2.5
M12>220 GeV
0.5<ΔR23<1.5

Fig. 2.

Fig. 2

Observed Δη23 distributions, corrected for detector effects, compared to MC predictions by pythia  6, pythia  8, herwig++, and MadGraph  + pythia  6. The MC samples are normalized to the total number of events in data

Fig. 3.

Fig. 3

Observed Δϕ23 distributions, corrected for detector effects, compared to MC predictions by pythia  6, pythia  8, herwig++, and MadGraph  + pythia  6. The MC samples are normalized to the total number of events in data

Monte Carlo models

The reconstructed jets are compared to the predictions of four different Monte Carlo generators that simulate jet production in pp collisions at s=7TeV. The numbers of events for all generator samples is much higher than the number of collected data events so the statistical uncertainties in the MC predictions are not visible in the figures.

The pythia [21] (version 6.422) event generator uses leading-order (LO) matrix elements to generate the 2 2 hard process in perturbative QCD (pQCD) and the parton shower (PS) model to simulate higher-order processes [2224]. The PS model gives a good description of parton emission when the emitted partons are close in phase space. Events are generated with the Z2 tune for the underlying event. This Z2 tune is identical to the Z1 tune described in Ref. [25], except that Z2 uses the CTEQ6L1 [26] parton distribution functions (PDFs) of the proton in which the parton showers are ordered in pT. The hadronization is simulated using the Lund string model [27, 28]. The older D6T tune [2931], where parton showers are ordered in Q2, is considered for comparison. The D6T tune was designed to describe the lower-energy results of UA5 and CDF. The color coherence effects are implemented in pythia  6 by means of an angular ordering algorithm where the effects can be switched on and off via the steering parameters MSTP(67) and MSTJ(50), which control the initial-state and the final-state showers, respectively.

The pythia  8 [32] (version 8.145) event generator, used with tune 4C [33], orders the parton showers in pT and models the underlying event using the multiple-parton interaction model from pythia  6 including initial- and final-state QCD radiation. The color coherence effects are implemented in a similar manner as for the pT-ordered showers in pythia  6.

The herwig++ [11, 34] (version 2.4.2) event generator takes LO matrix elements and simulates parton showers using the coherent branching algorithm with angular ordering of showers. The cluster hadronization model [35] is used in the formation of hadrons from the quarks and gluons produced in the parton shower. The underlying event is simulated using the eikonal multiple partonic scattering model [36]. The color coherence effects are implemented by the angular ordering of emissions in the parton shower using the coherent branching algorithm [37].

The MadGraph  4 [38] (version 2.24) event generator is interfaced with pythia  6 for the parton showering and the hadronization using the D6T tune and uses fixed-order matrix element calculations for the multiparton topologies. From two to four partons are considered in the final state. The color coherence for the hard jets at leading order comes from the exact QCD color amplitudes in the model. The kT MLM matching scheme [39] applied with a matching parameter of 60GeV avoids double-counting between the partons from MadGraph and the PS.

Measurement of the normalized β distribution and systematic uncertainties

The measurement of the β distribution is performed in two regions defined by the pseudorapidity of the second jet: the central region |η2|0.8 and the forward region 0.8<|η2|2.5. The angular correlation effects considered in this analysis appear to have a reduced sensitivity to the transverse momentum of the leading jet pT1. Consequently different pT1 bins are merged into one single bin.

The β distribution in a given η2 region is obtained as a sum of the events weighted by the luminosity collected by the trigger used in the associated pT1 bin. In case of MC samples the β distribution is obtained by summing together the events weighted by their generation level weight in a given η2 region. The normalized β distribution is then obtained by dividing the weighted number of events in a given bin of β by the total weighted number of events in the given η2 region.

In order to correct for the smearing effects induced by the detector resolution, an unfolding procedure is performed using the response matrices obtained from MC event generators. For this purpose the events generated with the MC programs (pythia  6, pythia  8, MadGraph  + pythia  6, and herwig++) are processed through a full CMS detector simulation package based on geant 4 [40].

Particle-level jets are built from the four-vectors of the MC generated particles with hadronization, but without detector effects. These jets are obtained using the same jet algorithm as for the reconstructed events. The resolutions in Δη23 and Δϕ23 are found to be of the order of 0.005 to 0.01, depending on the transverse momentum and pseudorapidity of the jets.

An iterative Bayesian unfolding technique [41] implemented in the RooUnfold package [42] is used to derive the unfolding corrections to the measured β distributions from the detector effects. The response matrix used to unfold the data is built using herwig++. The impact of the unfolding on the normalized distributions is typically of the order of 1 %.

Most of the systematic effects cancel out in the normalized β distribution, but the residual influence of several sources of systematic uncertainty has been considered:

  • The jet energy scale uncertainty is evaluated varying the jet response by 2.5–5 %, depending on the η and pT of the jets [43]. The impact of this source of systematic uncertainties is below 1%.

  • The jet energy and angular resolutions are accounted for by varying them by ±10% [44] and rebuilding the response matrices for the unfolding accordingly. The observed impact from both sources is in the range of 0.4–0.6 %.

  • The uncertainty due to the unfolding procedure is estimated by the dependence of the response matrix on the choice of MC generator, Alternative response matrices are built using alternative generators: pythia  6, pythia  8 and MadGraph  + pythia  6. The observed effect is of the order of 0.5 %.

The measurement is found to be insensitive to the number of pileup interactions within statistical fluctuations. In the data corresponding to this analysis the average number of pileup events per bunch crossing was around two. The total systematic uncertainties for each bin are about 2 %, and a list of the major uncertainties is summarized in Table 3. Each systematic source was found to be fully correlated between β and η2 bins [43, 44]. However, the various systematic sources are uncorrelated among themselves.

Table 3.

Typical systematic and statistical uncertainties in the normalized β spectrum and the statistical errors

Uncertainty sources |η2|0.8 0.8<|η2|2.5
Jet energy scale (JES) 1.0 % 1.0 %
Jet energy resolution (JER) 0.4 % 0.5 %
Jet angular resolution (JAR) 0.5 % 0.6 %
Physics model (PM) used in unfolding 0.6 % 0.7 %
Statistical uncertainty 4.0 % 3.7 %

Results

The unfolded β distributions are shown in Fig. 4 together with the predictions from the various MC models for the central (|η2|0.8) and forward (0.8<|η2|2.5) regions.

Fig. 4.

Fig. 4

Observed β distributions for the data, corrected for detector effects, and for the MC generators (pythia  6, pythia  8, herwig++, and MadGraph  + pythia  6) in the central (|η2|0.8) and forward (0.8<|η2|2.5) regions. The error bars show the statistical uncertainties, while the yellow shaded bands correspond to the combined systematic uncertainty

The values of the unfolded β distributions and their uncertainties are presented in Tables 4 and 5.

Table 4.

The unfolded β distributions and their uncertainties for the central region |η2|0.8. All uncertainties are symmetric and given in percent (%)

β (degree) Fη2(β) σStat σJES σJER σJAR σPM σSyst
0–10 0.0549 3.5 1.0 0.3 0.4 0.6 1.3
10–20 0.0535 3.9 1.1 0.4 0.6 0.6 1.4
20–30 0.0544 4.2 0.5 0.5 0.3 0.6 1.0
30–40 0.0538 4.0 1.1 0.2 0.3 0.6 1.3
40–50 0.0525 3.8 0.5 0.5 0.5 0.6 1.1
50–60 0.0515 4.4 0.6 0.6 0.7 0.6 1.3
60–70 0.0515 4.3 0.6 0.4 0.6 0.6 1.1
70–80 0.0519 4.1 0.5 0.3 0.4 0.6 0.9
80–90 0.0511 4.2 0.4 0.4 0.5 0.6 1.0
90–100 0.0515 4.3 0.5 0.3 0.2 0.6 0.9
100–110 0.0528 4.3 0.5 0.4 0.5 0.6 1.0
110–120 0.0543 4.3 0.6 0.6 0.3 0.6 1.1
120–130 0.0580 4.1 1.2 0.5 0.4 0.6 1.5
130–140 0.0583 3.7 0.5 0.6 0.3 0.6 1.0
140–150 0.0616 4.2 0.6 0.5 0.5 0.6 1.1
150–160 0.0622 3.9 0.9 0.6 0.5 0.6 1.3
160–170 0.0626 3.6 0.7 0.5 0.6 0.6 1.2
170–180 0.0638 3.2 0.5 0.7 0.6 0.6 1.2

Table 5.

The unfolded β distributions and their uncertainties for the forward region 0.8<|η2|2.5. All uncertainties are symmetric and given in percent (%)

β (degree) Fη2(β) σStat σJES σJER σJAR σPM σSyst
0–10 0.0388 3.9 1.6 0.5 0.5 0.7 1.9
10–20 0.0391 4.6 0.6 0.5 0.6 0.7 1.2
20–30 0.0406 4.4 0.7 0.4 0.5 0.7 1.2
30–40 0.0404 4.6 0.5 0.4 0.5 0.7 1.1
40–50 0.0414 4.2 0.6 0.5 0.5 0.7 1.2
50–60 0.0438 3.9 0.7 0.4 0.4 0.7 1.1
60–70 0.0430 4.4 0.8 0.5 0.6 0.7 1.3
70–80 0.0476 4.2 0.5 0.5 0.6 0.7 1.2
80–90 0.0491 4.0 1.2 0.4 0.5 0.7 1.5
90–100 0.0520 3.9 0.8 0.5 0.4 0.7 1.2
100–110 0.0567 3.6 0.8 0.5 0.5 0.7 1.3
110–120 0.0625 3.5 0.7 0.5 0.5 0.7 1.2
120–130 0.0662 3.2 0.8 0.5 0.6 0.7 1.3
130–140 0.0692 3.2 0.7 0.4 0.6 0.7 1.2
140–150 0.0736 3.1 0.6 0.6 0.5 0.7 1.2
150–160 0.0774 2.9 0.7 0.4 0.6 0.7 1.2
160–170 0.0795 2.9 0.8 0.5 0.5 0.7 1.3
170–180 0.0791 2.6 0.8 0.6 0.5 0.7 1.3

The ratios of the various MC predictions to the measured β distributions are shown in Fig. 5. The data exhibit a clear enhancement of events compared to the pythia and MadGraph generators near the event plane (β=0) and a suppression in the transverse plane (β=π/2). The χ2 comparisons of data with MC simulation, taking into account the statistical and systematic correlations between different data points, are shown separately for the central and forward regions in Table 6. The number of degrees of freedom (NDF) is 17, which is the number of bins minus one to account for the constraint imposed by the normalization.

Fig. 5.

Fig. 5

The ratio of the various MC predictions to the measured β distribution. The error bars show the statistical uncertainty of the data. The yellow band represents the systematic uncertainty, while the green band represents the total uncertainty

Table 6.

Values of χ2 for comparisons of the β distribution for the data with the predictions of various MC generators. The number of degrees of freedom for both regions is 17

MC event generator χ2/NDF
|η2|0.8 0.8<|η2|2.5
pythia  6 Z2 2.5 8.1
pythia  8 4C 1.7 6.4
herwig++ 2.3 1.2 3.5
MadGraph  + pythia  6 1.6 3.3

None of the models used in the analysis describes the data satisfactorily. Even though pythia  6 was adjusted with the Tevatron data, it fails to describe the LHC data since the χ2/NDF is large. No significant difference is observed between the tunes D6T and Z2. The pythia  8 tune 4C generator describes the data better than pythia  6 over the entire phase space, but the disagreement in the forward region is not negligible. The herwig++ event generator describes the data better than the other MC generators in the central region, but the agreement is poor in the forward region. Finally, when MadGraph is used with the exact 23 matrix element calculations at LO, the global description of the data is improved with respect to pythia  6 alone.

The impact of the color coherence effects is studied by switching them on and off for the first emission in the initial- and final-state showers in pythia  6. One can observe in Fig. 6 that the agreement between the data and the simulation deteriorates when the color coherence effects in the MC events are suppressed. More quantitatively, the χ2 divided by the number of degrees of freedom increases up to 7.7 in the central region and 11.5 in the forward region. The first emission in the initial- and final-state showers contributes roughly the same order. Using pythia, it has been verified that the impact of the non-perturbative component of the QCD calculation (hadronization and underlying event) is negligible for this analysis. One conclusion from this pythia study, as shown Fig. 6, is that the data clearly support larger color coherence effects than in present MC implementations.

Fig. 6.

Fig. 6

The MC predictions for the β distribution from pythia  6, with and without color coherence effects in the first branching of the initial- and final-state showers, compared to the measurement. The error bars show the uncorrelated statistical uncertainty of the data. The yellow band represents the systematic uncertainty, while the green band represents the total uncertainty

Summary

Color coherence effects in multijet events have been studied in a sample of pp collisions corresponding to an integrated luminosity of 36 pb-1 , collected with the CMS detector at s=7TeV. Distributions of the variable β, which was previously used in similar analyses at the Tevatron, are used to measure the angular correlation between the second and third jets in transverse-momentum order, in the pseudorapidity and azimuthal angle space. The measurements, unfolded for detector effects, are compared to the predictions of the MC event generators pythia  6, pythia  8, herwig++, and MadGraph  + pythia  6 in the central and forward rapidity regions. We have shown that the variable β is sensitive to color coherence effects, and insensitive to the hadronization and underlying event. It is necessary to implement the color coherence effects in MC simulations to better describe the data. Although the MC models in the analysis include this effect by default, none of them describes the data satisfactorily for all β values. The pythia  6 expectations predict weaker color coherence effects than those observed, while pythia  8 exhibits a better agreement with the data. The MadGraph MC generator, which uses the exact 23 matrix element calculations at LO matched to pythia  6 for parton showering, improves the agreement with data with respect to pythia  6 alone, while herwig++ describes the data in the central region better than the other MC generators but shows discrepancies in the forward region.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

  • 1.JADE Collaboration, Test of fragmentation models by comparison with three-jet events produced in e+e-hadrons. Phys. Lett. B 134, 275 (1984). doi:10.1016/0370-2693(84)90687-7
  • 2.TASSO Collaboration, A study of 3-jet events in e+e- annihilation into hadrons at 34.6 GeV c.m. energy. Zeit. Phys. C 29, 29 (1985). doi:10.1007/BF01571375
  • 3.TPC/2γ Collaboration, Tests of models for quark and gluon fragmentation in e+e- annihilation s=29 GeV. Z. Phys. C 28, 31 (1985). doi:10.1007/BF01550246
  • 4.TPC/2γ Collaboration, Tests of models for parton fragmentation using three jet events in e+e- annihilation at s=29 GeV. Phys. Rev. Lett. 54, 270 (1985). doi:10.1103/PhysRevLett.54.270 [DOI] [PubMed]
  • 5.TPC/2γ Collaboration, Comparison of the particle flow in qq¯g and qq¯γ events in e+e- annihilation. Phys. Rev. Lett. 57, 945 (1986). doi:10.1103/PhysRevLett.57.945 [DOI] [PubMed]
  • 6.MARK2 Collaboration, Comparison of the particle flow in three-jet and radiative two-jet events from e+e- annihilation at Ec.m.=29 GeV. Phys. Rev. Lett. 57, 1398 (1986). doi:10.1103/PhysRevLett.57.1398 [DOI] [PubMed]
  • 7.OPAL Collaboration, A study of coherence of soft gluons in hadron jets. Phys. Lett. B 247, 617 (1990). doi:10.1016/0370-2693(90)91911-T
  • 8.L3 Collaboration, Evidence for gluon interference in hadronic Z decays. Phys. Lett. B 353, 145 (1995). doi:10.1016/0370-2693(95)00552-V
  • 9.CDF Collaboration, Evidence for color coherence in pp¯ collisions at s=1.8 TeV. Phys. Rev. D 50, 5562 (1994). doi:10.1103/PhysRevD.50.5562 [DOI] [PubMed]
  • 10.D0 Collaboration, Color coherent radiation in multijet events from pp¯ collisions at s=1.8 TeV. Phys. Lett. B 414, 419 (1997). doi:10.1016/S0370-2693(97)01190-8
  • 11.Marchesini G, Webber B. Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B. 1988;310:461. doi: 10.1016/0550-3213(88)90089-2. [DOI] [Google Scholar]
  • 12.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004
  • 13.Cacciari M, Salam GP, Soyez G. The anti-kt jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 14.Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 15.CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and ETmiss. CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)
  • 16.CMS Collaboration, Determination of the jet energy scale in CMS with pp collisions at s=7 TeV”, CMS Physics Analysis Summary CMS-PAS-JME-10-010 (2010)
  • 17.CMS Collaboration, Jet energy resolution in CMS at s=7 TeV. CMS Physics Analysis Summary CMS-PAS-JME-10-014 (2010)
  • 18.Cacciari M, Salam GP. Pileup subtraction using jet areas. Phys. Lett. B. 2008;659:119. doi: 10.1016/j.physletb.2007.09.077. [DOI] [PubMed] [Google Scholar]
  • 19.CMS Collaboration, Tracking and primary vertex results in first 7 TeV collisions. CMS Physics Analysis Summary CMS-PAS-TRK-10-005 (2010)
  • 20.CMS Collaboration, Calorimeter jet quality criteria for the first CMS collision data. CMS Physics Analysis Summary CMS-PAS-JME-09-008 (2010)
  • 21.T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026
  • 22.Bengtsson M, Sjöstrand T. A comparative study of coherent and non-coherent parton shower evolution. Nucl. Phys. B. 1987;289:810. doi: 10.1016/0550-3213(87)90407-X. [DOI] [Google Scholar]
  • 23.Bengtsson M, Sjöstrand T. Coherent parton showers versus matrix elements—implications of PETRA/PEP data. Phys. Lett. B. 1987;185:435. doi: 10.1016/0370-2693(87)91031-8. [DOI] [Google Scholar]
  • 24.T. Sjöstrand, P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C 39(2), 129 (2005). doi:10.1140/epjc/s2004-02084-y
  • 25.R. Field, Early LHC underlying event data-findings and surprises (2010). arXiv:1010.3558
  • 26.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 27.Anderson B, Gustafson G, Ingelman G, Sjöstrand T. Parton fragmentation and string dynamics. Phys. Rep. 1983;97:31. doi: 10.1016/0370-1573(83)90080-7. [DOI] [Google Scholar]
  • 28.Sjöstrand T. The merging of jets. Phys. Lett. B. 1984;142:420. doi: 10.1016/0370-2693(84)91354-6. [DOI] [Google Scholar]
  • 29.Field R. Physics at the Tevatron. Acta Phys. Polon. B. 2008;39:2611. [Google Scholar]
  • 30.R. Field, in Proceedings of the First International Workshop on Multiple Partonic Interactions at the LHC MPI’08, Perugia, Italy, Oct 2009, ed. by P. Bartalini, L. Fanó. Studying the Underlying Event at CDF and the LHC (2009), p. 12 arXiv:1003.4220
  • 31.T. Sjöstrand, M.V. Zijl, A multiple interaction model for the event structure in hadron collisions. Phys. Rev. D 36, 2019 (1987). doi:10.1103/PhysRevD.36.2019 [DOI] [PubMed]
  • 32.Sjöstrand T, Mrenna S, Skands P. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008;178:852. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 33.R. Corke, T. Sjöstrand, Interleaved parton showers and tuning prospects. JHEP 03, 032 (2011). doi:10.1007/JHEP03(2011)032
  • 34.Bähr M, et al. HERWIG++ physics and manual. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • 35.Webber BR. A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B. 1984;238:492. doi: 10.1016/0550-3213(84)90333-X. [DOI] [Google Scholar]
  • 36.Bähr M, Gieseke S, Seymour MH. Simulation of multiple partonic interactions in Herwig++ JHEP. 2006;07:076. [Google Scholar]
  • 37.Gieseke S, Stephens P, Webber B. New formalism for QCD parton showers. JHEP. 2003;12:045. doi: 10.1088/1126-6708/2003/12/045. [DOI] [Google Scholar]
  • 38.Alwall J, et al. MadGraph/MadEvent v4: the new web generation. JHEP. 2007;09:028. doi: 10.1088/1126-6708/2007/09/028. [DOI] [Google Scholar]
  • 39.Mrenna S, Richardson P. Matching matrix elements and parton showers with HERWIG and PYTHIA. JHEP. 2004;05:040. doi: 10.1088/1126-6708/2004/05/040. [DOI] [Google Scholar]
  • 40.Agostinelli S, et al. GEANT4—a simulation toolkit. Nucl. Instr. Methods A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 41.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A. 1995;362:487. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 42.T. Adye, in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding. CERN, Geneva, Switzerland, 17–20 Jan 2011, ed. by H.B. Prosper, L. Lyons. Unfolding Algorithms and Tests Using RooUnfold (2011), p. 313. arXiv:1105.1160
  • 43.CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002
  • 44.CMS Collaboration, Jet performance in pp collisions at s=7 TeV. CMS Physics Analysis Summary CMS-PAS-JME-10-003 (2010)

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES