Skip to main content
Springer logoLink to Springer
. 2013 May 8;73(5):2404. doi: 10.1140/epjc/s10052-013-2404-z

Search for supersymmetry in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} =7$\end{document} TeV in events with a single lepton, jets, and missing transverse momentum

The CMS Collaboration1, S Chatrchyan 2, V Khachatryan 2, A M Sirunyan 2, A Tumasyan 2, W Adam 3, E Aguilo 3, T Bergauer 3, M Dragicevic 3, J Erö 3, C Fabjan 3, M Friedl 3, R Frühwirth 3, V M Ghete 3, J Hammer 3, N Hörmann 3, J Hrubec 3, M Jeitler 3, W Kiesenhofer 3, V Knünz 3, M Krammer 3, I Krätschmer 3, D Liko 3, I Mikulec 3, M Pernicka 3, B Rahbaran 3, C Rohringer 3, H Rohringer 3, R Schöfbeck 3, J Strauss 3, A Taurok 3, W Waltenberger 3, G Walzel 3, E Widl 3, C-E Wulz 3, V Mossolov 4, N Shumeiko 4, J Suarez Gonzalez 4, M Bansal 5, S Bansal 5, T Cornelis 5, E A De Wolf 5, X Janssen 5, S Luyckx 5, L Mucibello 5, S Ochesanu 5, B Roland 5, R Rougny 5, M Selvaggi 5, Z Staykova 5, H Van Haevermaet 5, P Van Mechelen 5, N Van Remortel 5, A Van Spilbeeck 5, F Blekman 6, S Blyweert 6, J D’Hondt 6, R Gonzalez Suarez 6, A Kalogeropoulos 6, M Maes 6, A Olbrechts 6, W Van Doninck 6, P Van Mulders 6, G P Van Onsem 6, I Villella 6, B Clerbaux 7, G De Lentdecker 7, V Dero 7, A P R Gay 7, T Hreus 7, A Léonard 7, P E Marage 7, A Mohammadi 7, T Reis 7, L Thomas 7, G Vander Marcken 7, C Vander Velde 7, P Vanlaer 7, J Wang 7, V Adler 8, K Beernaert 8, A Cimmino 8, S Costantini 8, G Garcia 8, M Grunewald 8, B Klein 8, J Lellouch 8, A Marinov 8, J Mccartin 8, A A Ocampo Rios 8, D Ryckbosch 8, N Strobbe 8, F Thyssen 8, M Tytgat 8, P Verwilligen 8, S Walsh 8, E Yazgan 8, N Zaganidis 8, S Basegmez 9, G Bruno 9, R Castello 9, L Ceard 9, C Delaere 9, T du Pree 9, D Favart 9, L Forthomme 9, A Giammanco 9, J Hollar 9, V Lemaitre 9, J Liao 9, O Militaru 9, C Nuttens 9, D Pagano 9, A Pin 9, K Piotrzkowski 9, N Schul 9, J M Vizan Garcia 9, N Beliy 10, T Caebergs 10, E Daubie 10, G H Hammad 10, G A Alves 11, M Correa Martins Junior 11, T Martins 11, M E Pol 11, M H G Souza 11, W L Aldá Júnior 12, W Carvalho 12, A Custódio 12, E M Da Costa 12, D De Jesus Damiao 12, C De Oliveira Martins 12, S Fonseca De Souza 12, D Matos Figueiredo 12, L Mundim 12, H Nogima 12, W L Prado Da Silva 12, A Santoro 12, L Soares Jorge 12, A Sznajder 12, T S Anjos 14, C A Bernardes 14, F A Dias 13, T R Fernandez Perez Tomei 13, E M Gregores 14, C Lagana 13, F Marinho 13, P G Mercadante 14, S F Novaes 13, Sandra S Padula 13, V Genchev 15, P Iaydjiev 15, S Piperov 15, M Rodozov 15, S Stoykova 15, G Sultanov 15, V Tcholakov 15, R Trayanov 15, M Vutova 15, A Dimitrov 16, R Hadjiiska 16, V Kozhuharov 16, L Litov 16, B Pavlov 16, P Petkov 16, J G Bian 17, G M Chen 17, H S Chen 17, C H Jiang 17, D Liang 17, S Liang 17, X Meng 17, J Tao 17, J Wang 17, X Wang 17, Z Wang 17, H Xiao 17, M Xu 17, J Zang 17, Z Zhang 17, C Asawatangtrakuldee 18, Y Ban 18, Y Guo 18, W Li 18, S Liu 18, Y Mao 18, S J Qian 18, H Teng 18, D Wang 18, L Zhang 18, W Zou 18, C Avila 19, J P Gomez 19, B Gomez Moreno 19, A F Osorio Oliveros 19, J C Sanabria 19, N Godinovic 20, D Lelas 20, R Plestina 20, D Polic 20, I Puljak 20, Z Antunovic 21, M Kovac 21, V Brigljevic 22, S Duric 22, K Kadija 22, J Luetic 22, S Morovic 22, A Attikis 23, M Galanti 23, G Mavromanolakis 23, J Mousa 23, C Nicolaou 23, F Ptochos 23, P A Razis 23, M Finger 24, M Finger Jr 24, Y Assran 25, S Elgammal 25, A Ellithi Kamel 25, M A Mahmoud 25, A Radi 25, M Kadastik 26, M Müntel 26, M Raidal 26, L Rebane 26, A Tiko 26, P Eerola 27, G Fedi 27, M Voutilainen 27, J Härkönen 28, A Heikkinen 28, V Karimäki 28, R Kinnunen 28, M J Kortelainen 28, T Lampén 28, K Lassila-Perini 28, S Lehti 28, T Lindén 28, P Luukka 28, T Mäenpää 28, T Peltola 28, E Tuominen 28, J Tuominiemi 28, E Tuovinen 28, D Ungaro 28, L Wendland 28, K Banzuzi 29, A Karjalainen 29, A Korpela 29, T Tuuva 29, M Besancon 30, S Choudhury 30, M Dejardin 30, D Denegri 30, B Fabbro 30, J L Faure 30, F Ferri 30, S Ganjour 30, A Givernaud 30, P Gras 30, G Hamel de Monchenault 30, P Jarry 30, E Locci 30, J Malcles 30, L Millischer 30, A Nayak 30, J Rander 30, A Rosowsky 30, I Shreyber 30, M Titov 30, S Baffioni 31, F Beaudette 31, L Benhabib 31, L Bianchini 31, M Bluj 31, C Broutin 31, P Busson 31, C Charlot 31, N Daci 31, T Dahms 31, M Dalchenko 31, L Dobrzynski 31, R Granier de Cassagnac 31, M Haguenauer 31, P Miné 31, C Mironov 31, I N Naranjo 31, M Nguyen 31, C Ochando 31, P Paganini 31, D Sabes 31, R Salerno 31, Y Sirois 31, C Veelken 31, A Zabi 31, J-L Agram 32, J Andrea 32, D Bloch 32, D Bodin 32, J-M Brom 32, M Cardaci 32, E C Chabert 32, C Collard 32, E Conte 32, F Drouhin 32, C Ferro 32, J-C Fontaine 32, D Gelé 32, U Goerlach 32, P Juillot 32, A-C Le Bihan 32, P Van Hove 32, F Fassi 33, D Mercier 33, S Beauceron 34, N Beaupere 34, O Bondu 34, G Boudoul 34, J Chasserat 34, R Chierici 34, D Contardo 34, P Depasse 34, H El Mamouni 34, J Fay 34, S Gascon 34, M Gouzevitch 34, B Ille 34, T Kurca 34, M Lethuillier 34, L Mirabito 34, S Perries 34, L Sgandurra 34, V Sordini 34, Y Tschudi 34, P Verdier 34, S Viret 34, Z Tsamalaidze 35, G Anagnostou 36, C Autermann 36, S Beranek 36, M Edelhoff 36, L Feld 36, N Heracleous 36, O Hindrichs 36, R Jussen 36, K Klein 36, J Merz 36, A Ostapchuk 36, A Perieanu 36, F Raupach 36, J Sammet 36, S Schael 36, D Sprenger 36, H Weber 36, B Wittmer 36, V Zhukov 36, M Ata 37, J Caudron 37, E Dietz-Laursonn 37, D Duchardt 37, M Erdmann 37, R Fischer 37, A Güth 37, T Hebbeker 37, C Heidemann 37, K Hoepfner 37, D Klingebiel 37, P Kreuzer 37, M Merschmeyer 37, A Meyer 37, M Olschewski 37, P Papacz 37, H Pieta 37, H Reithler 37, S A Schmitz 37, L Sonnenschein 37, J Steggemann 37, D Teyssier 37, M Weber 37, M Bontenackels 38, V Cherepanov 38, Y Erdogan 38, G Flügge 38, H Geenen 38, M Geisler 38, W Haj Ahmad 38, F Hoehle 38, B Kargoll 38, T Kress 38, Y Kuessel 38, J Lingemann 38, A Nowack 38, L Perchalla 38, O Pooth 38, P Sauerland 38, A Stahl 38, M Aldaya Martin 39, J Behr 39, W Behrenhoff 39, U Behrens 39, M Bergholz 39, A Bethani 39, K Borras 39, A Burgmeier 39, A Cakir 39, L Calligaris 39, A Campbell 39, E Castro 39, F Costanza 39, D Dammann 39, C Diez Pardos 39, G Eckerlin 39, D Eckstein 39, G Flucke 39, A Geiser 39, I Glushkov 39, P Gunnellini 39, S Habib 39, J Hauk 39, G Hellwig 39, H Jung 39, M Kasemann 39, P Katsas 39, C Kleinwort 39, H Kluge 39, A Knutsson 39, M Krämer 39, D Krücker 39, E Kuznetsova 39, W Lange 39, W Lohmann 39, B Lutz 39, R Mankel 39, I Marfin 39, M Marienfeld 39, I-A Melzer-Pellmann 39, A B Meyer 39, J Mnich 39, A Mussgiller 39, S Naumann-Emme 39, O Novgorodova 39, J Olzem 39, H Perrey 39, A Petrukhin 39, D Pitzl 39, A Raspereza 39, P M Ribeiro Cipriano 39, C Riedl 39, E Ron 39, M Rosin 39, J Salfeld-Nebgen 39, R Schmidt 39, T Schoerner-Sadenius 39, N Sen 39, A Spiridonov 39, M Stein 39, R Walsh 39, C Wissing 39, V Blobel 40, J Draeger 40, H Enderle 40, J Erfle 40, U Gebbert 40, M Görner 40, T Hermanns 40, R S Höing 40, K Kaschube 40, G Kaussen 40, H Kirschenmann 40, R Klanner 40, J Lange 40, B Mura 40, F Nowak 40, T Peiffer 40, N Pietsch 40, D Rathjens 40, C Sander 40, H Schettler 40, P Schleper 40, E Schlieckau 40, A Schmidt 40, M Schröder 40, T Schum 40, M Seidel 40, J Sibille 40, V Sola 40, H Stadie 40, G Steinbrück 40, J Thomsen 40, L Vanelderen 40, C Barth 41, J Berger 41, C Böser 41, T Chwalek 41, W De Boer 41, A Descroix 41, A Dierlamm 41, M Feindt 41, M Guthoff 41, C Hackstein 41, F Hartmann 41, T Hauth 41, M Heinrich 41, H Held 41, K H Hoffmann 41, U Husemann 41, I Katkov 41, J R Komaragiri 41, P Lobelle Pardo 41, D Martschei 41, S Mueller 41, Th Müller 41, M Niegel 41, A Nürnberg 41, O Oberst 41, A Oehler 41, J Ott 41, G Quast 41, K Rabbertz 41, F Ratnikov 41, N Ratnikova 41, S Röcker 41, F-P Schilling 41, G Schott 41, H J Simonis 41, F M Stober 41, D Troendle 41, R Ulrich 41, J Wagner-Kuhr 41, S Wayand 41, T Weiler 41, M Zeise 41, G Daskalakis 42, T Geralis 42, S Kesisoglou 42, A Kyriakis 42, D Loukas 42, I Manolakos 42, A Markou 42, C Markou 42, C Mavrommatis 42, E Ntomari 42, L Gouskos 43, T J Mertzimekis 43, A Panagiotou 43, N Saoulidou 43, I Evangelou 44, C Foudas 44, P Kokkas 44, N Manthos 44, I Papadopoulos 44, V Patras 44, G Bencze 45, C Hajdu 45, P Hidas 45, D Horvath 45, F Sikler 45, V Veszpremi 45, G Vesztergombi 45, N Beni 46, S Czellar 46, J Molnar 46, J Palinkas 46, Z Szillasi 46, J Karancsi 47, P Raics 47, Z L Trocsanyi 47, B Ujvari 47, S B Beri 48, V Bhatnagar 48, N Dhingra 48, R Gupta 48, M Kaur 48, M Z Mehta 48, N Nishu 48, L K Saini 48, A Sharma 48, J B Singh 48, Ashok Kumar 49, Arun Kumar 49, S Ahuja 49, A Bhardwaj 49, B C Choudhary 49, S Malhotra 49, M Naimuddin 49, K Ranjan 49, V Sharma 49, R K Shivpuri 49, S Banerjee 50, S Bhattacharya 50, S Dutta 50, B Gomber 50, Sa Jain 50, Sh Jain 50, R Khurana 50, S Sarkar 50, M Sharan 50, A Abdulsalam 51, R K Choudhury 51, D Dutta 51, S Kailas 51, V Kumar 51, P Mehta 51, A K Mohanty 51, L M Pant 51, P Shukla 51, T Aziz 52, S Ganguly 52, M Guchait 52, M Maity 52, G Majumder 52, K Mazumdar 52, G B Mohanty 52, B Parida 52, K Sudhakar 52, N Wickramage 52, S Banerjee 53, S Dugad 53, H Arfaei 54, H Bakhshiansohi 54, S M Etesami 54, A Fahim 54, M Hashemi 54, H Hesari 54, A Jafari 54, M Khakzad 54, M Mohammadi Najafabadi 54, S Paktinat Mehdiabadi 54, B Safarzadeh 54, M Zeinali 54, M Abbrescia 55,56, L Barbone 55,56, C Calabria 55,56, S S Chhibra 55,56, A Colaleo 55, D Creanza 55,57, N De Filippis 55,57, M De Palma 55,56, L Fiore 55, G Iaselli 55,57, G Maggi 55,57, M Maggi 55, B Marangelli 55,56, S My 55,57, S Nuzzo 55,56, N Pacifico 55,56, A Pompili 55,56, G Pugliese 55,57, G Selvaggi 55,56, L Silvestris 55, G Singh 55,56, R Venditti 55,56, G Zito 55, G Abbiendi 58, A C Benvenuti 58, D Bonacorsi 58,59, S Braibant-Giacomelli 58,59, L Brigliadori 58,59, P Capiluppi 58,59, A Castro 58,59, F R Cavallo 58, M Cuffiani 58,59, G M Dallavalle 58, F Fabbri 58, A Fanfani 58,59, D Fasanella 58,59, P Giacomelli 58, C Grandi 58, L Guiducci 58,59, S Marcellini 58, G Masetti 58, M Meneghelli 58,59, A Montanari 58, F L Navarria 58,59, F Odorici 58, A Perrotta 58, F Primavera 58,59, A M Rossi 58,59, T Rovelli 58,59, G P Siroli 58,59, R Travaglini 58,59, S Albergo 60,61, G Cappello 60,61, M Chiorboli 60,61, S Costa 60,61, R Potenza 60,61, A Tricomi 60,61, C Tuve 60,61, G Barbagli 62, V Ciulli 62,63, C Civinini 62, R D’Alessandro 62,63, E Focardi 62,63, S Frosali 62,63, E Gallo 62, S Gonzi 62,63, M Meschini 62, S Paoletti 62, G Sguazzoni 62, A Tropiano 62,63, L Benussi 64, S Bianco 64, S Colafranceschi 64, F Fabbri 64, D Piccolo 64, P Fabbricatore 65, R Musenich 65, S Tosi 65,66, A Benaglia 67,68, F De Guio 67,68, L Di Matteo 67,68, S Fiorendi 67,68, S Gennai 67, A Ghezzi 67,68, S Malvezzi 67, R A Manzoni 67,68, A Martelli 67,68, A Massironi 67,68, D Menasce 67, L Moroni 67, M Paganoni 67,68, D Pedrini 67, S Ragazzi 67,68, N Redaelli 67, S Sala 67, T Tabarelli de Fatis 67,68, S Buontempo 69, C A Carrillo Montoya 69, N Cavallo 69,71, A De Cosa 69,70, O Dogangun 69,70, F Fabozzi 69,71, A O M Iorio 69,70, L Lista 69, S Meola 69,72, M Merola 69, P Paolucci 69, P Azzi 73, N Bacchetta 73, D Bisello 73,74, A Branca 73,74, R Carlin 73,74, P Checchia 73, T Dorigo 73, U Dosselli 73, F Gasparini 73,74, U Gasparini 73,74, A Gozzelino 73, K Kanishchev 73,75, S Lacaprara 73, I Lazzizzera 73,75, M Margoni 73,74, A T Meneguzzo 73,74, J Pazzini 73,74, N Pozzobon 73,74, P Ronchese 73,74, F Simonetto 73,74, E Torassa 73, M Tosi 73,74, S Vanini 73,74, P Zotto 73,74, G Zumerle 73,74, M Gabusi 76,77, S P Ratti 76,77, C Riccardi 76,77, P Torre 76,77, P Vitulo 76,77, M Biasini 78,79, G M Bilei 78, L Fanò 78,79, P Lariccia 78,79, G Mantovani 78,79, M Menichelli 78, A Nappi 78,79, F Romeo 78,79, A Saha 78, A Santocchia 78,79, A Spiezia 78,79, S Taroni 78,79, P Azzurri 80,82, G Bagliesi 80, J Bernardini 80, T Boccali 80, G Broccolo 80,82, R Castaldi 80, R T D’Agnolo 80,82, R Dell’Orso 80, F Fiori 80,81, L Foà 80,82, A Giassi 80, A Kraan 80, F Ligabue 80,82, T Lomtadze 80, L Martini 80, A Messineo 80,81, F Palla 80, A Rizzi 80,81, A T Serban 80, P Spagnolo 80, P Squillacioti 80, R Tenchini 80, G Tonelli 80,81, A Venturi 80, P G Verdini 80, L Barone 83,84, F Cavallari 83, D Del Re 83,84, M Diemoz 83, C Fanelli 83,84, M Grassi 83,84, E Longo 83,84, P Meridiani 83, F Micheli 83,84, S Nourbakhsh 83,84, G Organtini 83,84, R Paramatti 83, S Rahatlou 83,84, M Sigamani 83, L Soffi 83,84, N Amapane 85,86, R Arcidiacono 85,87, S Argiro 85,86, M Arneodo 85,87, C Biino 85, N Cartiglia 85, M Costa 85,86, N Demaria 85, C Mariotti 85, S Maselli 85, E Migliore 85,86, V Monaco 85,86, M Musich 85, M M Obertino 85,87, N Pastrone 85, M Pelliccioni 85, A Potenza 85,86, A Romero 85,86, M Ruspa 85,87, R Sacchi 85,86, A Solano 85,86, A Staiano 85, A Vilela Pereira 85, S Belforte 88, V Candelise 88,89, M Casarsa 88, F Cossutti 88, G Della Ricca 88,89, B Gobbo 88, M Marone 88,89, D Montanino 88,89, A Penzo 88, A Schizzi 88,89, S G Heo 90, T Y Kim 90, S K Nam 90, S Chang 91, D H Kim 91, G N Kim 91, D J Kong 91, H Park 91, S R Ro 91, D C Son 91, T Son 91, J Y Kim 92, Zero J Kim 92, S Song 92, S Choi 93, D Gyun 93, B Hong 93, M Jo 93, H Kim 93, T J Kim 93, K S Lee 93, D H Moon 93, S K Park 93, M Choi 94, J H Kim 94, C Park 94, I C Park 94, S Park 94, G Ryu 94, Y Cho 95, Y Choi 95, Y K Choi 95, J Goh 95, M S Kim 95, E Kwon 95, B Lee 95, J Lee 95, S Lee 95, H Seo 95, I Yu 95, M J Bilinskas 96, I Grigelionis 96, M Janulis 96, A Juodagalvis 96, H Castilla-Valdez 97, E De La Cruz-Burelo 97, I Heredia-de La Cruz 97, R Lopez-Fernandez 97, R Magaña Villalba 97, J Martínez-Ortega 97, A Sanchez-Hernandez 97, L M Villasenor-Cendejas 97, S Carrillo Moreno 98, F Vazquez Valencia 98, H A Salazar Ibarguen 99, E Casimiro Linares 100, A Morelos Pineda 100, M A Reyes-Santos 100, D Krofcheck 101, A J Bell 102, P H Butler 102, R Doesburg 102, S Reucroft 102, H Silverwood 102, M Ahmad 103, M H Ansari 103, M I Asghar 103, J Butt 103, H R Hoorani 103, S Khalid 103, W A Khan 103, T Khurshid 103, S Qazi 103, M A Shah 103, M Shoaib 103, H Bialkowska 104, B Boimska 104, T Frueboes 104, R Gokieli 104, M Górski 104, M Kazana 104, K Nawrocki 104, K Romanowska-Rybinska 104, M Szleper 104, G Wrochna 104, P Zalewski 104, G Brona 105, K Bunkowski 105, M Cwiok 105, W Dominik 105, K Doroba 105, A Kalinowski 105, M Konecki 105, J Krolikowski 105, N Almeida 106, P Bargassa 106, A David 106, P Faccioli 106, P G Ferreira Parracho 106, M Gallinaro 106, J Seixas 106, J Varela 106, P Vischia 106, I Belotelov 107, P Bunin 107, I Golutvin 107, V Karjavin 107, V Konoplyanikov 107, G Kozlov 107, A Lanev 107, A Malakhov 107, P Moisenz 107, V Palichik 107, V Perelygin 107, M Savina 107, S Shmatov 107, S Shulha 107, V Smirnov 107, A Volodko 107, A Zarubin 107, S Evstyukhin 108, V Golovtsov 108, Y Ivanov 108, V Kim 108, P Levchenko 108, V Murzin 108, V Oreshkin 108, I Smirnov 108, V Sulimov 108, L Uvarov 108, S Vavilov 108, A Vorobyev 108, An Vorobyev 108, Yu Andreev 109, A Dermenev 109, S Gninenko 109, N Golubev 109, M Kirsanov 109, N Krasnikov 109, V Matveev 109, A Pashenkov 109, D Tlisov 109, A Toropin 109, V Epshteyn 110, M Erofeeva 110, V Gavrilov 110, M Kossov 110, N Lychkovskaya 110, V Popov 110, G Safronov 110, S Semenov 110, V Stolin 110, E Vlasov 110, A Zhokin 110, A Belyaev 111, E Boos 111, M Dubinin 111, L Dudko 111, A Ershov 111, A Gribushin 111, V Klyukhin 111, O Kodolova 111, I Lokhtin 111, A Markina 111, S Obraztsov 111, M Perfilov 111, S Petrushanko 111, A Popov 111, L Sarycheva 111, V Savrin 111, A Snigirev 111, V Andreev 112, M Azarkin 112, I Dremin 112, M Kirakosyan 112, A Leonidov 112, G Mesyats 112, S V Rusakov 112, A Vinogradov 112, I Azhgirey 113, I Bayshev 113, S Bitioukov 113, V Grishin 113, V Kachanov 113, D Konstantinov 113, V Krychkine 113, V Petrov 113, R Ryutin 113, A Sobol 113, L Tourtchanovitch 113, S Troshin 113, N Tyurin 113, A Uzunian 113, A Volkov 113, P Adzic 114, M Djordjevic 114, M Ekmedzic 114, D Krpic 114, J Milosevic 114, M Aguilar-Benitez 115, J Alcaraz Maestre 115, P Arce 115, C Battilana 115, E Calvo 115, M Cerrada 115, M Chamizo Llatas 115, N Colino 115, B De La Cruz 115, A Delgado Peris 115, D Domínguez Vázquez 115, C Fernandez Bedoya 115, J P Fernández Ramos 115, A Ferrando 115, J Flix 115, M C Fouz 115, P Garcia-Abia 115, O Gonzalez Lopez 115, S Goy Lopez 115, J M Hernandez 115, M I Josa 115, G Merino 115, J Puerta Pelayo 115, A Quintario Olmeda 115, I Redondo 115, L Romero 115, J Santaolalla 115, M S Soares 115, C Willmott 115, C Albajar 116, G Codispoti 116, J F de Trocóniz 116, H Brun 117, J Cuevas 117, J Fernandez Menendez 117, S Folgueras 117, I Gonzalez Caballero 117, L Lloret Iglesias 117, J Piedra Gomez 117, J A Brochero Cifuentes 118, I J Cabrillo 118, A Calderon 118, S H Chuang 118, J Duarte Campderros 118, M Felcini 118, M Fernandez 118, G Gomez 118, J Gonzalez Sanchez 118, A Graziano 118, C Jorda 118, A Lopez Virto 118, J Marco 118, R Marco 118, C Martinez Rivero 118, F Matorras 118, F J Munoz Sanchez 118, T Rodrigo 118, A Y Rodríguez-Marrero 118, A Ruiz-Jimeno 118, L Scodellaro 118, I Vila 118, R Vilar Cortabitarte 118, D Abbaneo 119, E Auffray 119, G Auzinger 119, M Bachtis 119, P Baillon 119, A H Ball 119, D Barney 119, J F Benitez 119, C Bernet 119, G Bianchi 119, P Bloch 119, A Bocci 119, A Bonato 119, C Botta 119, H Breuker 119, T Camporesi 119, G Cerminara 119, T Christiansen 119, J A Coarasa Perez 119, D D’Enterria 119, A Dabrowski 119, A De Roeck 119, S Di Guida 119, M Dobson 119, N Dupont-Sagorin 119, A Elliott-Peisert 119, B Frisch 119, W Funk 119, G Georgiou 119, M Giffels 119, D Gigi 119, K Gill 119, D Giordano 119, M Girone 119, M Giunta 119, F Glege 119, R Gomez-Reino Garrido 119, P Govoni 119, S Gowdy 119, R Guida 119, M Hansen 119, P Harris 119, C Hartl 119, J Harvey 119, B Hegner 119, A Hinzmann 119, V Innocente 119, P Janot 119, K Kaadze 119, E Karavakis 119, K Kousouris 119, P Lecoq 119, Y-J Lee 119, P Lenzi 119, C Lourenço 119, N Magini 119, T Mäki 119, M Malberti 119, L Malgeri 119, M Mannelli 119, L Masetti 119, F Meijers 119, S Mersi 119, E Meschi 119, R Moser 119, M U Mozer 119, M Mulders 119, P Musella 119, E Nesvold 119, T Orimoto 119, L Orsini 119, E Palencia Cortezon 119, E Perez 119, L Perrozzi 119, A Petrilli 119, A Pfeiffer 119, M Pierini 119, M Pimiä 119, D Piparo 119, G Polese 119, L Quertenmont 119, A Racz 119, W Reece 119, J Rodrigues Antunes 119, G Rolandi 119, C Rovelli 119, M Rovere 119, H Sakulin 119, F Santanastasio 119, C Schäfer 119, C Schwick 119, I Segoni 119, S Sekmen 119, A Sharma 119, P Siegrist 119, P Silva 119, M Simon 119, P Sphicas 119, D Spiga 119, A Tsirou 119, G I Veres 119, J R Vlimant 119, H K Wöhri 119, S D Worm 119, W D Zeuner 119, W Bertl 120, K Deiters 120, W Erdmann 120, K Gabathuler 120, R Horisberger 120, Q Ingram 120, H C Kaestli 120, S König 120, D Kotlinski 120, U Langenegger 120, F Meier 120, D Renker 120, T Rohe 120, L Bäni 121, P Bortignon 121, M A Buchmann 121, B Casal 121, N Chanon 121, A Deisher 121, G Dissertori 121, M Dittmar 121, M Donegà 121, M Dünser 121, J Eugster 121, K Freudenreich 121, C Grab 121, D Hits 121, P Lecomte 121, W Lustermann 121, A C Marini 121, P Martinez Ruiz del Arbol 121, N Mohr 121, F Moortgat 121, C Nägeli 121, P Nef 121, F Nessi-Tedaldi 121, F Pandolfi 121, L Pape 121, F Pauss 121, M Peruzzi 121, F J Ronga 121, M Rossini 121, L Sala 121, A K Sanchez 121, A Starodumov 121, B Stieger 121, M Takahashi 121, L Tauscher 121, A Thea 121, K Theofilatos 121, D Treille 121, C Urscheler 121, R Wallny 121, H A Weber 121, L Wehrli 121, C Amsler 122, V Chiochia 122, S De Visscher 122, C Favaro 122, M Ivova Rikova 122, B Millan Mejias 122, P Otiougova 122, P Robmann 122, H Snoek 122, S Tupputi 122, M Verzetti 122, Y H Chang 123, K H Chen 123, C M Kuo 123, S W Li 123, W Lin 123, Z K Liu 123, Y J Lu 123, D Mekterovic 123, A P Singh 123, R Volpe 123, S S Yu 123, P Bartalini 124, P Chang 124, Y H Chang 124, Y W Chang 124, Y Chao 124, K F Chen 124, C Dietz 124, U Grundler 124, W-S Hou 124, Y Hsiung 124, K Y Kao 124, Y J Lei 124, R-S Lu 124, D Majumder 124, E Petrakou 124, X Shi 124, J G Shiu 124, Y M Tzeng 124, X Wan 124, M Wang 124, B Asavapibhop 125, N Srimanobhas 125, A Adiguzel 126, M N Bakirci 126, S Cerci 126, C Dozen 126, I Dumanoglu 126, E Eskut 126, S Girgis 126, G Gokbulut 126, E Gurpinar 126, I Hos 126, E E Kangal 126, T Karaman 126, G Karapinar 126, A Kayis Topaksu 126, G Onengut 126, K Ozdemir 126, S Ozturk 126, A Polatoz 126, K Sogut 126, D Sunar Cerci 126, B Tali 126, H Topakli 126, L N Vergili 126, M Vergili 126, I V Akin 127, T Aliev 127, B Bilin 127, S Bilmis 127, M Deniz 127, H Gamsizkan 127, A M Guler 127, K Ocalan 127, A Ozpineci 127, M Serin 127, R Sever 127, U E Surat 127, M Yalvac 127, E Yildirim 127, M Zeyrek 127, E Gülmez 128, B Isildak 128, M Kaya 128, O Kaya 128, S Ozkorucuklu 128, N Sonmez 128, K Cankocak 129, L Levchuk 130, J J Brooke 131, E Clement 131, D Cussans 131, H Flacher 131, R Frazier 131, J Goldstein 131, M Grimes 131, G P Heath 131, H F Heath 131, L Kreczko 131, S Metson 131, D M Newbold 131, K Nirunpong 131, A Poll 131, S Senkin 131, V J Smith 131, T Williams 131, L Basso 132, K W Bell 132, A Belyaev 132, C Brew 132, R M Brown 132, D J A Cockerill 132, J A Coughlan 132, K Harder 132, S Harper 132, J Jackson 132, B W Kennedy 132, E Olaiya 132, D Petyt 132, B C Radburn-Smith 132, C H Shepherd-Themistocleous 132, I R Tomalin 132, W J Womersley 132, R Bainbridge 133, G Ball 133, R Beuselinck 133, O Buchmuller 133, D Colling 133, N Cripps 133, M Cutajar 133, P Dauncey 133, G Davies 133, M Della Negra 133, W Ferguson 133, J Fulcher 133, D Futyan 133, A Gilbert 133, A Guneratne Bryer 133, G Hall 133, Z Hatherell 133, J Hays 133, G Iles 133, M Jarvis 133, G Karapostoli 133, L Lyons 133, A-M Magnan 133, J Marrouche 133, B Mathias 133, R Nandi 133, J Nash 133, A Nikitenko 133, A Papageorgiou 133, J Pela 133, M Pesaresi 133, K Petridis 133, M Pioppi 133, D M Raymond 133, S Rogerson 133, A Rose 133, M J Ryan 133, C Seez 133, P Sharp 133, A Sparrow 133, M Stoye 133, A Tapper 133, M Vazquez Acosta 133, T Virdee 133, S Wakefield 133, N Wardle 133, T Whyntie 133, M Chadwick 134, J E Cole 134, P R Hobson 134, A Khan 134, P Kyberd 134, D Leggat 134, D Leslie 134, W Martin 134, I D Reid 134, P Symonds 134, L Teodorescu 134, M Turner 134, K Hatakeyama 135, H Liu 135, T Scarborough 135, O Charaf 136, C Henderson 136, P Rumerio 136, A Avetisyan 137, T Bose 137, C Fantasia 137, A Heister 137, J St John 137, P Lawson 137, D Lazic 137, J Rohlf 137, D Sperka 137, L Sulak 137, J Alimena 138, S Bhattacharya 138, D Cutts 138, Z Demiragli 138, A Ferapontov 138, A Garabedian 138, U Heintz 138, S Jabeen 138, G Kukartsev 138, E Laird 138, G Landsberg 138, M Luk 138, M Narain 138, D Nguyen 138, M Segala 138, T Sinthuprasith 138, T Speer 138, K V Tsang 138, R Breedon 139, G Breto 139, M Calderon De La Barca Sanchez 139, S Chauhan 139, M Chertok 139, J Conway 139, R Conway 139, P T Cox 139, J Dolen 139, R Erbacher 139, M Gardner 139, R Houtz 139, W Ko 139, A Kopecky 139, R Lander 139, O Mall 139, T Miceli 139, D Pellett 139, F Ricci-Tam 139, B Rutherford 139, M Searle 139, J Smith 139, M Squires 139, M Tripathi 139, R Vasquez Sierra 139, R Yohay 139, V Andreev 140, D Cline 140, R Cousins 140, J Duris 140, S Erhan 140, P Everaerts 140, C Farrell 140, J Hauser 140, M Ignatenko 140, C Jarvis 140, C Plager 140, G Rakness 140, P Schlein 140, P Traczyk 140, V Valuev 140, M Weber 140, J Babb 141, R Clare 141, M E Dinardo 141, J Ellison 141, J W Gary 141, F Giordano 141, G Hanson 141, G Y Jeng 141, H Liu 141, O R Long 141, A Luthra 141, H Nguyen 141, S Paramesvaran 141, J Sturdy 141, S Sumowidagdo 141, R Wilken 141, S Wimpenny 141, W Andrews 142, J G Branson 142, G B Cerati 142, S Cittolin 142, D Evans 142, F Golf 142, A Holzner 142, R Kelley 142, M Lebourgeois 142, J Letts 142, I Macneill 142, B Mangano 142, S Padhi 142, C Palmer 142, G Petrucciani 142, M Pieri 142, M Sani 142, V Sharma 142, S Simon 142, E Sudano 142, M Tadel 142, Y Tu 142, A Vartak 142, S Wasserbaech 142, F Würthwein 142, A Yagil 142, J Yoo 142, D Barge 143, R Bellan 143, C Campagnari 143, M D’Alfonso 143, T Danielson 143, K Flowers 143, P Geffert 143, J Incandela 143, C Justus 143, P Kalavase 143, S A Koay 143, D Kovalskyi 143, V Krutelyov 143, S Lowette 143, N Mccoll 143, V Pavlunin 143, F Rebassoo 143, J Ribnik 143, J Richman 143, R Rossin 143, D Stuart 143, W To 143, C West 143, A Apresyan 144, A Bornheim 144, Y Chen 144, E Di Marco 144, J Duarte 144, M Gataullin 144, Y Ma 144, A Mott 144, H B Newman 144, C Rogan 144, M Spiropulu 144, V Timciuc 144, J Veverka 144, R Wilkinson 144, S Xie 144, Y Yang 144, R Y Zhu 144, B Akgun 145, V Azzolini 145, A Calamba 145, R Carroll 145, T Ferguson 145, Y Iiyama 145, D W Jang 145, Y F Liu 145, M Paulini 145, H Vogel 145, I Vorobiev 145, J P Cumalat 146, B R Drell 146, W T Ford 146, A Gaz 146, E Luiggi Lopez 146, J G Smith 146, K Stenson 146, K A Ulmer 146, S R Wagner 146, J Alexander 147, A Chatterjee 147, N Eggert 147, L K Gibbons 147, B Heltsley 147, A Khukhunaishvili 147, B Kreis 147, N Mirman 147, G Nicolas Kaufman 147, J R Patterson 147, A Ryd 147, E Salvati 147, W Sun 147, W D Teo 147, J Thom 147, J Thompson 147, J Tucker 147, J Vaughan 147, Y Weng 147, L Winstrom 147, P Wittich 147, D Winn 148, S Abdullin 149, M Albrow 149, J Anderson 149, L A T Bauerdick 149, A Beretvas 149, J Berryhill 149, P C Bhat 149, I Bloch 149, K Burkett 149, J N Butler 149, V Chetluru 149, H W K Cheung 149, F Chlebana 149, V D Elvira 149, I Fisk 149, J Freeman 149, Y Gao 149, D Green 149, O Gutsche 149, J Hanlon 149, R M Harris 149, J Hirschauer 149, B Hooberman 149, S Jindariani 149, M Johnson 149, U Joshi 149, B Kilminster 149, B Klima 149, S Kunori 149, S Kwan 149, C Leonidopoulos 149, J Linacre 149, D Lincoln 149, R Lipton 149, J Lykken 149, K Maeshima 149, J M Marraffino 149, S Maruyama 149, D Mason 149, P McBride 149, K Mishra 149, S Mrenna 149, Y Musienko 149, C Newman-Holmes 149, V O’Dell 149, O Prokofyev 149, E Sexton-Kennedy 149, S Sharma 149, W J Spalding 149, L Spiegel 149, L Taylor 149, S Tkaczyk 149, N V Tran 149, L Uplegger 149, E W Vaandering 149, R Vidal 149, J Whitmore 149, W Wu 149, F Yang 149, F Yumiceva 149, J C Yun 149, D Acosta 150, P Avery 150, D Bourilkov 150, M Chen 150, T Cheng 150, S Das 150, M De Gruttola 150, G P Di Giovanni 150, D Dobur 150, A Drozdetskiy 150, R D Field 150, M Fisher 150, Y Fu 150, I K Furic 150, J Gartner 150, J Hugon 150, B Kim 150, J Konigsberg 150, A Korytov 150, A Kropivnitskaya 150, T Kypreos 150, J F Low 150, K Matchev 150, P Milenovic 150, G Mitselmakher 150, L Muniz 150, M Park 150, R Remington 150, A Rinkevicius 150, P Sellers 150, N Skhirtladze 150, M Snowball 150, J Yelton 150, M Zakaria 150, V Gaultney 151, S Hewamanage 151, L M Lebolo 151, S Linn 151, P Markowitz 151, G Martinez 151, J L Rodriguez 151, T Adams 152, A Askew 152, J Bochenek 152, J Chen 152, B Diamond 152, S V Gleyzer 152, J Haas 152, S Hagopian 152, V Hagopian 152, M Jenkins 152, K F Johnson 152, H Prosper 152, V Veeraraghavan 152, M Weinberg 152, M M Baarmand 153, B Dorney 153, M Hohlmann 153, H Kalakhety 153, I Vodopiyanov 153, M R Adams 154, I M Anghel 154, L Apanasevich 154, Y Bai 154, V E Bazterra 154, R R Betts 154, I Bucinskaite 154, J Callner 154, R Cavanaugh 154, O Evdokimov 154, L Gauthier 154, C E Gerber 154, D J Hofman 154, S Khalatyan 154, F Lacroix 154, M Malek 154, C O’Brien 154, C Silkworth 154, D Strom 154, P Turner 154, N Varelas 154, U Akgun 155, E A Albayrak 155, B Bilki 155, W Clarida 155, F Duru 155, J-P Merlo 155, H Mermerkaya 155, A Mestvirishvili 155, A Moeller 155, J Nachtman 155, C R Newsom 155, E Norbeck 155, Y Onel 155, F Ozok 155, S Sen 155, P Tan 155, E Tiras 155, J Wetzel 155, T Yetkin 155, K Yi 155, B A Barnett 156, B Blumenfeld 156, S Bolognesi 156, D Fehling 156, G Giurgiu 156, A V Gritsan 156, Z J Guo 156, G Hu 156, P Maksimovic 156, S Rappoccio 156, M Swartz 156, A Whitbeck 156, P Baringer 157, A Bean 157, G Benelli 157, R P Kenny Iii 157, M Murray 157, D Noonan 157, S Sanders 157, R Stringer 157, G Tinti 157, J S Wood 157, V Zhukova 157, A F Barfuss 158, T Bolton 158, I Chakaberia 158, A Ivanov 158, S Khalil 158, M Makouski 158, Y Maravin 158, S Shrestha 158, I Svintradze 158, J Gronberg 159, D Lange 159, D Wright 159, A Baden 160, M Boutemeur 160, B Calvert 160, S C Eno 160, J A Gomez 160, N J Hadley 160, R G Kellogg 160, M Kirn 160, T Kolberg 160, Y Lu 160, M Marionneau 160, A C Mignerey 160, K Pedro 160, A Skuja 160, J Temple 160, M B Tonjes 160, S C Tonwar 160, E Twedt 160, A Apyan 161, G Bauer 161, J Bendavid 161, W Busza 161, E Butz 161, I A Cali 161, M Chan 161, V Dutta 161, G Gomez Ceballos 161, M Goncharov 161, K A Hahn 161, Y Kim 161, M Klute 161, K Krajczar 161, P D Luckey 161, T Ma 161, S Nahn 161, C Paus 161, D Ralph 161, C Roland 161, G Roland 161, M Rudolph 161, G S F Stephans 161, F Stöckli 161, K Sumorok 161, K Sung 161, D Velicanu 161, E A Wenger 161, R Wolf 161, B Wyslouch 161, M Yang 161, Y Yilmaz 161, A S Yoon 161, M Zanetti 161, S I Cooper 162, B Dahmes 162, A De Benedetti 162, G Franzoni 162, A Gude 162, S C Kao 162, K Klapoetke 162, Y Kubota 162, J Mans 162, N Pastika 162, R Rusack 162, M Sasseville 162, A Singovsky 162, N Tambe 162, J Turkewitz 162, L M Cremaldi 163, R Kroeger 163, L Perera 163, R Rahmat 163, D A Sanders 163, E Avdeeva 164, K Bloom 164, S Bose 164, D R Claes 164, A Dominguez 164, M Eads 164, J Keller 164, I Kravchenko 164, J Lazo-Flores 164, H Malbouisson 164, S Malik 164, G R Snow 164, A Godshalk 165, I Iashvili 165, S Jain 165, A Kharchilava 165, A Kumar 165, G Alverson 166, E Barberis 166, D Baumgartel 166, M Chasco 166, J Haley 166, D Nash 166, D Trocino 166, D Wood 166, J Zhang 166, A Anastassov 167, A Kubik 167, L Lusito 167, N Mucia 167, N Odell 167, R A Ofierzynski 167, B Pollack 167, A Pozdnyakov 167, M Schmitt 167, S Stoynev 167, M Velasco 167, S Won 167, L Antonelli 168, D Berry 168, A Brinkerhoff 168, K M Chan 168, M Hildreth 168, C Jessop 168, D J Karmgard 168, J Kolb 168, K Lannon 168, W Luo 168, S Lynch 168, N Marinelli 168, D M Morse 168, T Pearson 168, M Planer 168, R Ruchti 168, J Slaunwhite 168, N Valls 168, M Wayne 168, M Wolf 168, B Bylsma 169, L S Durkin 169, C Hill 169, R Hughes 169, K Kotov 169, T Y Ling 169, D Puigh 169, M Rodenburg 169, C Vuosalo 169, G Williams 169, B L Winer 169, N Adam 170, E Berry 170, P Elmer 170, D Gerbaudo 170, V Halyo 170, P Hebda 170, J Hegeman 170, A Hunt 170, P Jindal 170, D Lopes Pegna 170, P Lujan 170, D Marlow 170, T Medvedeva 170, M Mooney 170, J Olsen 170, P Piroué 170, X Quan 170, A Raval 170, B Safdi 170, H Saka 170, D Stickland 170, C Tully 170, J S Werner 170, A Zuranski 170, E Brownson 171, A Lopez 171, H Mendez 171, J E Ramirez Vargas 171, E Alagoz 172, V E Barnes 172, D Benedetti 172, G Bolla 172, D Bortoletto 172, M De Mattia 172, A Everett 172, Z Hu 172, M Jones 172, O Koybasi 172, M Kress 172, A T Laasanen 172, N Leonardo 172, V Maroussov 172, P Merkel 172, D H Miller 172, N Neumeister 172, I Shipsey 172, D Silvers 172, A Svyatkovskiy 172, M Vidal Marono 172, H D Yoo 172, J Zablocki 172, Y Zheng 172, S Guragain 173, N Parashar 173, A Adair 174, C Boulahouache 174, K M Ecklund 174, F J M Geurts 174, W Li 174, B P Padley 174, R Redjimi 174, J Roberts 174, J Zabel 174, B Betchart 175, A Bodek 175, Y S Chung 175, R Covarelli 175, P de Barbaro 175, R Demina 175, Y Eshaq 175, T Ferbel 175, A Garcia-Bellido 175, P Goldenzweig 175, J Han 175, A Harel 175, D C Miner 175, D Vishnevskiy 175, M Zielinski 175, A Bhatti 176, R Ciesielski 176, L Demortier 176, K Goulianos 176, G Lungu 176, S Malik 176, C Mesropian 176, S Arora 177, A Barker 177, J P Chou 177, C Contreras-Campana 177, E Contreras-Campana 177, D Duggan 177, D Ferencek 177, Y Gershtein 177, R Gray 177, E Halkiadakis 177, D Hidas 177, A Lath 177, S Panwalkar 177, M Park 177, R Patel 177, V Rekovic 177, J Robles 177, K Rose 177, S Salur 177, S Schnetzer 177, C Seitz 177, S Somalwar 177, R Stone 177, S Thomas 177, M Walker 177, G Cerizza 178, M Hollingsworth 178, S Spanier 178, Z C Yang 178, A York 178, R Eusebi 179, W Flanagan 179, J Gilmore 179, T Kamon 179, V Khotilovich 179, R Montalvo 179, I Osipenkov 179, Y Pakhotin 179, A Perloff 179, J Roe 179, A Safonov 179, T Sakuma 179, S Sengupta 179, I Suarez 179, A Tatarinov 179, D Toback 179, N Akchurin 180, J Damgov 180, C Dragoiu 180, P R Dudero 180, C Jeong 180, K Kovitanggoon 180, S W Lee 180, T Libeiro 180, Y Roh 180, I Volobouev 180, E Appelt 181, A G Delannoy 181, C Florez 181, S Greene 181, A Gurrola 181, W Johns 181, P Kurt 181, C Maguire 181, A Melo 181, M Sharma 181, P Sheldon 181, B Snook 181, S Tuo 181, J Velkovska 181, M W Arenton 182, M Balazs 182, S Boutle 182, B Cox 182, B Francis 182, J Goodell 182, R Hirosky 182, A Ledovskoy 182, C Lin 182, C Neu 182, J Wood 182, S Gollapinni 183, R Harr 183, P E Karchin 183, C Kottachchi Kankanamge Don 183, P Lamichhane 183, A Sakharov 183, M Anderson 184, D A Belknap 184, L Borrello 184, D Carlsmith 184, M Cepeda 184, S Dasu 184, E Friis 184, L Gray 184, K S Grogg 184, M Grothe 184, R Hall-Wilton 184, M Herndon 184, A Hervé 184, P Klabbers 184, J Klukas 184, A Lanaro 184, C Lazaridis 184, J Leonard 184, R Loveless 184, A Mohapatra 184, I Ojalvo 184, F Palmonari 184, G A Pierro 184, I Ross 184, A Savin 184, W H Smith 184, J Swanson 184
PMCID: PMC4370766  PMID: 25814857

Abstract

Results are reported from a search for new physics processes in events containing a single isolated high-transverse-momentum lepton (electron or muon), energetic jets, and large missing transverse momentum. The analysis is based on a 4.98 fb−1 sample of proton–proton collisions at a center-of-mass energy of 7 TeV, obtained with the CMS detector at the LHC. Three separate background estimation methods, each relying primarily on control samples in the data, are applied to a range of signal regions, providing complementary approaches for estimating the background yields. The observed yields are consistent with the predicted standard model backgrounds. The results are interpreted in terms of limits on the parameter space for the constrained minimal supersymmetric extension of the standard model, as well as on cross sections for simplified models, which provide a generic description of the production and decay of new particles in specific, topology based final states.

Electronic Supplementary Material

The online version of this article (doi:10.1140/epjc/s10052-013-2404-z) contains supplementary material, which is available to authorized users.

Introduction

This paper reports results from an updated and improved search for new physics processes in proton–proton collisions at a center-of-mass energy of 7 TeV, focusing on the signature with a single isolated lepton (electron or muon), multiple energetic jets, and large missing momentum transverse to the beam direction (Inline graphic). The data sample was collected by the Compact Muon Solenoid (CMS) experiment during 2011 at the Large Hadron Collider (LHC) and corresponds to an integrated luminosity of 4.98 fb−1, roughly one hundred times larger than the sample used for our previous search [1].

The Inline graphic signature is prominent in models based on supersymmetry (SUSY) [27]. In R-parity-conserving models [8], SUSY particles are produced in pairs, and their decay chains end with the lightest supersymmetric particle (LSP). In some scenarios, the LSP is a neutralino (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0}$\end{document}), a heavy, electrically neutral, weakly interacting particle with the properties of a dark-matter candidate [9]. The presence of two such LSPs in each SUSY event typically leads to a large missing transverse momentum, depending on the details of the SUSY mass spectrum. The isolated lepton indicates a weak decay of a heavy particle, such as a W boson or a chargino (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{\pm}$\end{document}). Multiple jets can be produced in complex decay chains of SUSY particles. This signature arises in many SUSY models, including the constrained minimal supersymmetric extension of the standard model (CMSSM) [10, 11], and in simplified models [1215], which are based on simplified mass spectra and decays of new particles. Both of these frameworks are used to interpret the results. Searches in this or similar channels have been reported by CMS [1, 16] and ATLAS [1719].

Searches for SUSY particles are complicated by the presence of standard model (SM) backgrounds that can share many of the features of signal events. In the single-lepton final state, backgrounds arise primarily from the production of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events, with smaller contributions from Z+jets, single-top quark production, and QCD multijet events. In the event topology studied here, a large observed value of Inline graphic in a standard model event is usually genuine, resulting from the production of one or more high-momentum neutrinos. A smaller contribution to events in the high-Inline graphic tail in this search can arise from the mismeasurement of jets in high cross section processes such as QCD multijet events. To determine the contributions from these backgrounds, we use methods that are primarily based on control samples in data, sometimes in conjunction with specific information from simulated event samples or from additional measurements that provide constraints on the background processes.

Three complementary methods are used to analyze the data, providing valuable cross-checks and probing different signal regions. The Lepton Spectrum (LS) method was used in the CMS single-lepton [1] and opposite-sign dilepton [20] SUSY searches performed using the 2010 data sample. It uses the observed lepton transverse momentum (p T) spectrum and other control samples to predict the Inline graphic distribution associated with the dominant SM backgrounds. This method is sensitive to SUSY models in which the Inline graphic distribution is decoupled from the lepton p T spectrum, as is the case when two undetected LSPs produce a large missing transverse momentum. The Lepton-Projection Variable (L P) method uses the L P variable, which was developed for the CMS measurement of the W polarization in W+jets events [21]. This variable, described in Sect. 6, is correlated with the helicity angle of the lepton in the W-boson rest frame. Both the L P and the LS methods take advantage of well-understood properties of the W polarization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events for the background determination. The methods are complementary in that they rely on significantly different approaches to determining the backgrounds, based on different kinematic variables and different signal regions. The ANN method uses an artificial neural network discriminant built from several kinematic quantities. The ANN discriminant is then used in conjunction with Inline graphic to define signal and sideband regions, from which the background yield is determined. A key variable in the ANN is M T, an approximate invariant mass of the system comprising the lepton and the Inline graphic, computed with the momentum components transverse to the beam direction. Background events usually have M T<M(W), where M(W) is the W boson mass, because the observed Inline graphic is associated with the neutrino from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{W}\to\ell\bar{\nu}$\end{document} decay.

This paper is organized as follows. Sections 2 and 3 describe the CMS detector and the event samples. The event preselection requirements that are common to all methods are discussed in Sect. 4. Sections 5, 6, and 7 describe the LS, L P, and ANN methods, respectively, for obtaining SM background estimates from control samples in data. The observed yields in data are compared with the background estimate obtained for each method. Systematic uncertainties are described in Sect. 8. Finally, the results, interpretation, and conclusions of the analysis are presented in Sects. 9 and 10.

The CMS detector

The CMS detector, described in detail in Ref. [22], is a multipurpose apparatus designed to study high-p T physics processes in proton–proton collisions, as well as a broad range of phenomena in heavy-ion collisions. The central element of CMS is a 3.8 T superconducting solenoid, 13 m in length and 6 m in diameter. Within the magnet are (in order of increasing distance from the beam pipe) high-precision silicon pixel and silicon strip detectors for charged particle tracking; a lead–tungstate crystal electromagnetic calorimeter for measurements of photons, electrons, and the electromagnetic component of jets; and a hadron calorimeter, constructed from scintillating tiles and brass absorbers, for jet energy measurements. Beyond the magnet is the muon system, comprising drift tube, cathode strip, and resistive-plate detectors interleaved with steel absorbers. Most of the detector systems are divided into subsystems that cover the central (barrel) and forward (endcap) regions. The first level of the CMS trigger consists of custom hardware processors that use information from the calorimeter and the muon system to select up to 100 kHz of the most interesting events. These events are then analyzed in the High Level Trigger (HLT) processor farm, which uses information from all CMS detector systems to reduce the event rate to about 300 Hz.

In describing the angular distribution of particles and the acceptance of the detector, we frequently make use of the pseudorapidity, η=−ln[tan(θ/2)], where the polar angle θ of the particle’s momentum vector is measured with respect to the z axis of the CMS coordinate system. The z axis points along the direction of the counterclockwise-moving proton beam; the azimuthal angle ϕ is measured in a plane perpendicular to this axis. The separation between two momentum vectors in ηϕ space is characterized by the quantity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta R = \sqrt{(\Delta\eta)^{2}+ (\Delta\phi)^{2}}$\end{document}, which is approximately invariant under Lorentz boosts along the z axis.

Data and simulated event samples

The data samples used in the analysis were selected using triggers based on Inline graphic, lepton p T, and the transverse momenta (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}} ^{j}$\end{document}) of the observed jets j. The overall level of jet activity was measured with the quantity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}}^{\mathrm{trigger}}=\sum_{j} p_{\mathrm{T}}^{j}$\end{document}, the scalar sum of jet transverse momenta satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}}^{j}>40~\mathrm{GeV}$\end{document}. The missing transverse momentum Inline graphic was computed in the trigger using particle-flow algorithms [23, 24]. To maintain an acceptable trigger rate, the thresholds on Inline graphic, lepton p T, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}} ^{\mathrm{trigger}}$\end{document}, were raised as the LHC luminosity increased over the course of the data collection period. The highest thresholds applied in the muon trigger selection were Inline graphic, muon p T>15 GeV, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}}^{\mathrm{trigger}}>300~\mathrm{GeV}$\end{document}. For electron triggers, the highest thresholds applied were Inline graphic, electron p T>15 GeV and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}}^{\mathrm{trigger}}> 250~\mathrm{GeV}$\end{document}; a loose electron isolation requirement was also applied to help control the rate. The offline analysis requirements for both muon and electron events are more restrictive than those used in the trigger.

The analysis procedures are designed using simulated event samples. Except for certain scans of the SUSY parameter space discussed later, the detector simulation is performed using the Geant4 package [25]. A variety of Monte Carlo (MC) event generators are used to model the backgrounds. The QCD multijet samples are generated with the pythia 6.4.22 [26] MC generator with tune Z2 [27]. The dominant background, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}, is studied with a sample generated using MadGraph 5.1.1.0 [28]. The W+jets and Z+jets processes are also simulated with MadGraph. Single-top (s-channel, t-channel, and tW) production is simulated with powheg [29]. To model the effect of multiple pp interactions per beam crossing (pileup), simulated events are generated with a nominal distribution of multiple vertices, then reweighted to match the distribution of the number of collision vertices per bunch crossing as measured in data.

Event samples for SUSY benchmark models are generated with pythia. As example CMSSM scenarios, we use LM3 and LM6, which are among the standard benchmarks [30] used in CMS. The CMSSM benchmarks are described by the universal scalar mass parameter m 0, the universal gaugino mass parameter m 1/2, the universal trilinear soft-SUSY-breaking parameter A 0, the ratio of the two Higgs-doublet vacuum expectation values tanβ, and the sign of the Higgs mixing parameter μ. The LM3 (LM6) benchmark is described by m 0=330 GeV (85 GeV), m 1/2=240 GeV (400 GeV), A 0=0 GeV (0 GeV), tanβ=20 (10), and μ>0 (0). For LM3, the masses of the gluino and squarks are very similar (≈600 GeV), except for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(\widetilde{\mathrm{t}})\approx440~\mathrm{GeV}$\end{document}, while the mass of the LSP is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(\widetilde{\chi}^{0}_{1}) = 94~\mathrm{GeV}$\end{document}. The LM6 spectrum is heavier, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(\widetilde{\mathrm{g}})\approx930~\mathrm{GeV}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(\widetilde {\mathrm{q}})\approx800~\mathrm{GeV}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(\widetilde{\mathrm{t}})\approx650~\mathrm{GeV}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(\widetilde{\chi }^{0}_{1})\approx 160~\mathrm{GeV}$\end{document}. The next-to-leading-order (NLO) cross sections for these models are approximately 4.8 pb (LM3), and 0.4 pb (LM6).

The ANN method uses the LM0 model [30] to train the neural network. Because of its large cross section (54.9 pb at NLO), LM0 has already been excluded [1], but its kinematic distributions still provide a reasonably generic description of SUSY behavior with respect to the variables used in the neural network. The parameters for LM0 are m 0=200 GeV, m 1/2=160 GeV, A 0=−400 GeV, tanβ=10, and μ>0.

The results are interpreted in two ways: (i) as constraints on CMSSM parameter space and (ii) as constraints on cross sections for event topologies described in the framework of simplified models. In both cases, a large number of simulated event samples are required to scan over the relevant space of model parameters. For this reason, the scans are performed with the CMS fast simulation package [31], which reduces the time associated with the detector simulation.

Both the LS and L P background determination methods rely on knowledge of the W-boson polarization in W+jets and in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline {\mathrm{t}}$\end{document} events. The polarization effects are well modeled in simulated event samples, which are used in conjunction with control samples in data. The angular distribution of the (positively) charged lepton in the W+ rest frame can be written as:

graphic file with name 10052_2013_2404_Equ1_HTML.gif 1

where f +1, f −1, and f 0 denote the polarization fractions associated with the W-boson helicities +1, −1, and 0, respectively. The angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta^{*}_{\ell}$\end{document} is the polar angle of the charged lepton in the W+ rest frame, measured with respect to a z axis that is aligned with the momentum direction of the W+ in the top-quark rest frame. The polarization fractions thus determine the angular distribution of the lepton in the W rest frame and, together with the Lorentz boosts, control the p T distributions of the lepton and the neutrino in the laboratory frame.

The W polarization fractions in top-quark decays have been calculated [32] with QCD corrections to next-to-next-to-leading order (NNLO), and the polarization is predominantly longitudinal. For t→bW+ these fractions are f 0=0.687±0.005, f −1=0.311±0.005, and f +1=0.0017±0.0001. These precise calculations reduce the uncertainties associated with the W polarization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline {\mathrm{t}}$\end{document} events to a low level. The theoretical values are consistent with measurements from ATLAS [33], which obtained f 0=0.67±0.03±0.06, f −1=0.32±0.02±0.03, and f +1=0.01±0.01±0.04, expressed for the W+ polarizations.

The W polarization in W+jets events exhibits a more complex behavior than that in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} production. Both CMS [21] and ATLAS [34] have reported measurements of these effects, which are consistent with alpgen [35] and MadGraph [28] simulations predicting that the W+ and W bosons are both predominantly left-handed in W+jets events at high p T. An NLO QCD calculation [36] has demonstrated that the predicted polarization fractions are stable with respect to QCD corrections. As discussed in later sections, this detailed knowledge of the W-boson polarization provides key information for measuring the SM backgrounds using control samples in data.

Event preselection

Table 1 summarizes the main variables and requirements used in the event preselection, which is designed to be simple and robust. Except where noted, a common set of preselection requirements is used by each of the three analysis methods. Events are required to have at least one good reconstructed primary vertex, at least three jets (L P method and ANN method) or four jets (LS method), and exactly one isolated muon or exactly one isolated electron. These basic requirements select an event sample that is dominated by genuine, single-lepton events from SM processes.

Table 1.

Main preselection requirements. The term lepton designates either an electron or a muon. Definitions of the quantities and further details are given in the text

Quantity Requirement
Primary vertex position ρ PV<2 cm, |z PV|<24 cm
Jet p T threshold >40 GeV
Jet η range |η|<2.4
Number of jets

≥3 (L P and ANN methods),

≥4 (LS method)

Lepton p T threshold >20 GeV
Muon η range |η|<2.1
Muon isolation (relative) <0.10
Electron η range |η|<1.442, 1.56<|η|<2.4
Electron isolation (relative)

<0.07 (barrel),

<0.06 (endcaps)

Lepton p T thresh. for veto >15 GeV

The primary vertex must satisfy a set of quality requirements, including |z PV|<24 cm and ρ PV<2 cm, where z PV and ρ PV are the longitudinal and transverse distances of the primary vertex with respect to the nominal interaction point in the CMS detector.

Jets are reconstructed offline using the anti-k T clustering algorithm [37] with a distance parameter of 0.5. The particle four-vectors reconstructed by the CMS particle-flow algorithm [23, 24], are used as inputs to the jet clustering algorithm. The particle-flow algorithm combines information from all CMS sub-detectors to provide a complete list of long-lived particles in the event. Corrections based on simulation are applied to the jet energies to establish a uniform response across the detector and a first approximation to the absolute energy scale [38]. Additional jet energy corrections are applied to the data using measurements of energy balance in dijet and photon+jet control samples in data. These additional corrections take into account residual differences between the jet energy scale in data and simulation. The effect of pileup was significant during much of the data-taking period. Extra energy clustered into jets due to pileup is taken into account with an event-by-event correction to the jet momentum four-vectors. Jet candidates are required to satisfy quality criteria that suppress noise and spurious energy deposits in the calorimeters. The performance of jet reconstruction and the corrections are described in Ref. [38]. In this analysis, reconstructed jets are required to satisfy p T>40 GeV and |η|<2.4. The Inline graphic vector is defined as the negative of the vector sum of the transverse momenta of all the particles reconstructed and identified by the particle-flow algorithm.

In the muon channel, the preselection requires a single muon candidate [39] satisfying p T(μ)>20 GeV and |η|<2.1. Several requirements are imposed on the elements that form the muon candidate. The reconstructed track must satisfy quality criteria related to the number of hits in the pixel, strip, and muon detectors, and it must have an impact parameter d 0 in the transverse plane with respect to the beam spot satisfying |d 0|<0.02 cm and an impact parameter d z with respect to the primary vertex along the z direction satisfying |d z|<1.0 cm.

To suppress background in which the muon originates from a semileptonic decay of a hadron containing a bottom or charm quark, we require that the muon candidate be spatially isolated from other energy in the event. A cone of size ΔR=0.3 is constructed around the initial muon momentum direction in ηϕ space. The muon combined isolation variable, I comb=∑ΔR<0.3(E T+p T), is defined as the sum of the transverse energy E T (as measured in the electromagnetic and hadron calorimeters) and the transverse momentum p T (as measured in the silicon tracker) of all reconstructed objects within this cone, excluding the muon. This quantity is used to compute the combined isolation relative to the muon transverse momentum, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I^{\mathrm{comb}}_{\mathrm{rel}}=I^{\mathrm{comb}}/p_{\mathrm{T}}(\mu)$\end{document}, which is required to satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I^{\mathrm{comb}}_{\mathrm{rel}}<0.1$\end{document}.

Electron candidates [40] are reconstructed by matching energy clusters in the ECAL with tracks in the silicon tracking system. Candidates must satisfy p T>20 GeV and |η|<2.4, excluding the barrel-endcap transition region (1.442<|η|<1.56). Quality and photon-conversion rejection requirements are also imposed. The relative isolation variable, defined in a manner similar to that in the muon channel, must satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I^{\mathrm{comb}}_{\mathrm{rel}}<0.07$\end{document} in the barrel region and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I^{\mathrm{comb}}_{\mathrm{rel}}<0.06$\end{document} in the endcaps. The requirements on d 0 and d z are the same as those used in the muon channel.

The preselection requirements have a large effect on the sample composition. The lepton isolation requirement is critical for the rejection of QCD multijet processes, which have very large cross sections but are reduced to a low level by the isolation and the other preselection requirements. While many lepton candidates are produced in the semileptonic decays of hadrons containing b or c quarks, from π and K decays in flight, and from misidentification of hadrons, the vast majority of these candidates are either within or near hadronic jets. The background from W+jets events (primarily from W→eν or W→μν, but also W→τν) is initially also very large. This contribution is heavily suppressed by the three- or four-jet requirement. Depending on the particular signal region, either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} or W+jets production emerges as the largest contribution to the background in the sample of events with moderate to large Inline graphic.

Events with a second isolated-lepton candidate satisfying the criteria listed in Table 1 are vetoed. This requirement not only suppresses SM background, but also minimizes the statistical overlap between the event sample used in this search and those used in multilepton searches. However, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events with dileptons can still be present, and this contribution must be determined, particularly because the presence of two neutrinos in the decay chains can result in large values of Inline graphic. The background involving W→τν decays, both from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline {\mathrm{t}}$\end{document} events and from direct W production, must also be determined. To help suppress the dilepton background, the requirements on the veto leptons are somewhat looser than those on the signal lepton. For both muons and electrons, the p T threshold is p T>15 GeV, the isolation requirement is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I^{\mathrm{comb}}_{\mathrm{rel}}<0.15$\end{document}, and the impact parameter requirement is |d 0|<0.1 cm (the d z requirement is kept the same as for the signal lepton). In addition, some of the quality requirements for both the muon and electron are loosened.

Further event selection requirements are used in the individual background estimation methods described in Sects. 5, 6, and 7. The methods use the quantity H T, which is defined as the scalar sum of the transverse momenta of particle-flow jets j with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{\mathrm{T}}^{j}>40~\mathrm{GeV}$\end{document} and |η j|<2.4,

graphic file with name 10052_2013_2404_Equ2_HTML.gif 2

The three background determination methods presented in the following three sections use different approaches to estimating the SM backgrounds using control samples in data. In Sect. 9, we compare the results of the different methods and make some observations about their features.

Lepton Spectrum method

Overview of the Lepton Spectrum method

This section describes the Lepton Spectrum (LS) method, which is named for the technique used to determine the dominant background source: genuine, single-lepton processes. Such processes account for about 75 % of the total SM background in the signal regions and arise primarily from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}, single-top, and W+jets events. Their contribution to the Inline graphic distribution is estimated by exploiting the fact that, when the lepton is produced in W-boson decay, the Inline graphic distribution is fundamentally related to the lepton p T spectrum, unlike the Inline graphic for many SUSY models. A more detailed description of the Lepton Spectrum method is given in the references [1, 41].

Non-single-lepton backgrounds are also determined using control samples in the data. Such events arise mainly from (i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} dilepton events, in which zero, one, or both of the leptons is a τ and (ii) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events with a single τ→(μ,e) decay. Background from QCD multijet events is expected from simulation to be very small. However, the uncertainties in such simulations are difficult to quantify, because the QCD multijet background in the phase space relevant to this analysis arises from extreme tails of processes with very large cross sections. We therefore use control samples in data to measure the QCD multijet background. Simulated event samples are used for the determination of the Z+jets contribution, which is estimated with sufficient precision to be below one event for most of the signal regions.

The signal regions are defined with three thresholds in H T (H T≥500 GeV, H T≥750 GeV, and H T≥1000 GeV) and four bins in Inline graphic (Inline graphic, Inline graphic, Inline graphic, and Inline graphic).

Estimation of single-lepton backgrounds

The physical foundation of the Lepton Spectrum method is that, when the lepton and neutrino are produced together in two-body W decay (either in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} or in W+jets events), the lepton p T spectrum is directly related to the Inline graphic spectrum. The lepton and the neutrino share a common Lorentz boost from the W rest frame to the laboratory frame. As a consequence, the lepton spectrum reflects the p T distribution of the W, regardless of whether the lepton was produced in a top-quark decay or in a W+jets event. With suitable corrections, discussed below, the lepton p T spectrum can therefore be used to predict the Inline graphic spectrum for SM single-lepton backgrounds.

The Inline graphic distribution in many SUSY models is dominated by the presence of two LSPs. In contrast to the SM backgrounds, the Inline graphic and lepton p T distributions in SUSY processes are therefore nearly decoupled. The Inline graphic distribution for such models extends to far higher values than the lepton spectrum. Figure 1 shows the relationship between the lepton-p T and Inline graphic distributions in the laboratory frame for two simulated event samples: (i) the predicted SM mixture of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events and (ii) the SUSY LM6 benchmark model. When taken from data, the upper-left region in Fig. 1 (top) provides the key control sample of high-p T leptons from SM processes. This region typically has very little contamination from SUSY events, which populate the high-Inline graphic region but have relatively low lepton p T values.

Fig. 1.

Fig. 1

Distributions of muon p T vs. Inline graphic in the μ channel for simulated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events (top) and for the LM6 SUSY benchmark model (bottom)

The lepton p T spectrum is measured with a muon control sample defined by the preselection criteria and the H T requirements. Unlike the signal region, no Inline graphic requirement is applied, because even a modest one (Inline graphic) would bias the high end of the lepton p T spectrum, which is critical for making the background prediction. Only muon events are used as a control sample, because the QCD multijet background is significant in the low-Inline graphic region of the electron sample. The number of events that are common to both the control sample and the signal region is small. For example, the overlap as measured in simulated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events is 3.6 % for H T≥750 GeV, Inline graphic, and p T≥250 GeV. Because no Inline graphic requirement is placed on the muon control sample, a small amount of QCD background remains and must be measured and subtracted. The scaling from the muon to the electron samples is obtained by fitting their ratio in the data over the range Inline graphic, with systematic uncertainties evaluated by varying the fit range. The resulting correction factor is N(e)/N(μ)=0.88±0.03±0.03, where the uncertainties are statistical and systematic, respectively.

To use the lepton spectrum to predict the Inline graphic spectrum in single-lepton SM background processes, three main issues must be understood: (i) the effect of the W-boson polarization in both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events, (ii) the effect of the applied lepton p T threshold, and (iii) the difference between the experimental resolutions on the measurements of lepton p T and Inline graphic.

The status of theoretical and experimental knowledge of W-boson polarization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and in W+jets events is discussed in Sect. 3. The helicity zero polarization state results in a forward–backward symmetric angular distribution of the lepton and the neutrino in the W rest frame (with respect to the W momentum direction), leading to identical lepton and neutrino spectra in the laboratory frame. In contrast, the helicity ±1 states result in angular asymmetries that lead to somewhat different lepton and neutrino p T spectra in the laboratory frame. These effects are taken into account by applying correction factors obtained from simulation to the measured lepton spectrum, with uncertainties as described in Sect. 8.

The second key issue in the Lepton Spectrum method is the effect of the threshold (p T>20 GeV) applied to the leptons in both the signal and control samples. Because of the anticorrelation between the lepton p T and the Inline graphic arising from non-zero W-boson helicity states, the threshold requirement removes SM background events in the high-Inline graphic signal region but not the events in the control sample with high-p T muons that are used to predict the high tail of the Inline graphic spectrum. For the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} background, this effect partially compensates for the bias from the W polarization. For W+jets events, in contrast, the polarization effects for W+ and W approximately cancel, but the lepton p T threshold shifts the predicted yield upward. Correction factors from simulation are used to account for these effects (as well as for polarization effects), which are well defined and understood.

Finally, the resolution on the reconstructed Inline graphic is poorer than that for the lepton p T, so the Inline graphic spectrum is somewhat broadened with respect to the prediction from the lepton spectrum. We measure Inline graphic resolution functions in the data using QCD multijet events obtained with a set of single-jet triggers spanning the range from E T≥30 GeV to E T≥370 GeV. These resolution functions, or templates, quantify the Inline graphic resolution as a function of the number of jets and the H T of the event. These templates are used to smear the measured lepton momenta. Because the templates are taken from data, they include not only the intrinsic detector resolutions, but also acceptance effects. The overall effect of the smearing is modest, changing the background prediction by 5–15 %, depending on the Inline graphic threshold applied.

The raw background predictions for the single-lepton background are corrected to account for the effects described above, as well as for the small contamination of the single-lepton control sample arising from dilepton and single-τ events with high-p T leptons. These backgrounds are measured separately, as described below. The overall correction factor is defined such that the single-lepton prediction in a given signal region in simulation matches the yield from single-lepton processes.

The predicted single-lepton background yield varies from about 150 events for the signal region with Inline graphic and H T≥500 GeV to about 3 events for the region with Inline graphic and H T≥1000 GeV. These predictions, as well as the expectations from simulation, are presented in Tables 2, 3, and 4 and discussed in more detail in Sect. 5.4.

Table 2.

Event yields for the Lepton Spectrum method for H T≥500 GeV. The upper part of the table gives the background predictions that are based on simulated (MC) event samples and the yield for the SUSY signal points LM3 and LM6. The lower part gives the backgrounds predicted using control samples in the data (data-driven prediction). The actual yield observed in data is given at the bottom, with the separate muon and electron yields given in parentheses (N μ,N e) after the total yield. The uncertainties on the background predictions are statistical and systematic. The MC yields are not used in setting limits and are included only for reference. The uncertainties on the MC yields are statistical only

Inline graphic range [GeV] [250, 350) [350, 450) [450, 550) ≥550
MC yields
1 146.7±2.1 34.8±1.1 8.5±0.6 2.9±0.3
Dilepton 19.9±0.5 3.8±0.2 0.7±0.1 0.3±0.1
1 τ 30.6±0.9 7.9±0.5 2.1±0.3 0.8±0.2
Z+jets 1.3±0.8 <0.1 <0.1 <0.1
Total (MC) 198.6±2.5 46.5±1.2 11.3±0.6 4.0±0.4
SUSY LM3 (MC) 266.3±3.7 91.0±2.2 23.3±1.1 9.9±0.7
SUSY LM6 (MC) 23.4±0.3 20.0±0.3 13.4±0.2 10.8±0.2
Data-driven prediction
1 109±13±18 32.0±7.5±5.8 3.9±2.7±1.2 3.1±2.3±1.0
Dilepton 15.8±1.9±1.8 3.0±0.9±0.5 0.5±0.3±0.2 0.1±0.2±0.2
1 τ 33.0±1.8±1.7 8.9±1.0±0.5 2.1±0.5±0.2 1.1±0.3±0.2
QCD 0.0±1.0±1.2 0.0±1.0±1.2 0.0±1.0±1.2 0.0±1.0±1.2
Z+jets (MC) 1.3±0.8±1.3 <0.1 <0.1 <0.1
Total (predicted) 159±14±18 44.0±7.7±6.0 6.6±2.9±1.7 4.3±2.6±1.6
Data (observed) 163 (84,79) 46 (21,25) 9 (8,1) 2 (1,1)

Table 3.

Event yields for the Lepton Spectrum method for H T≥750 GeV. Further details are given in the Table 2 caption

Inline graphic range [GeV] [250, 350) [350, 450) [450, 550) ≥550
MC yield
1 47.3±1.2 14.9±0.7 5.4±0.4 2.7±0.3
Dilepton 8.2±0.4 2.3±0.2 0.6±0.1 0.3±0.1
1 τ 9.2±0.5 3.0±0.3 1.2±0.2 0.7±0.2
Z+jets 0.7±0.6 <0.1 <0.1 <0.1
Total (MC) 65.4±1.5 20.2±0.8 7.2±0.5 3.6±0.4
SUSY LM3 (MC) 114.6±2.5 47.1±1.6 16.1±0.9 8.6±0.7
SUSY LM6 (MC) 14.9±0.3 13.8±0.2 10.3±0.2 9.8±0.2
Data-driven prediction
1 41.7±8.7±5.4 11.7±5.0±1.9 2.6±2.3±0.6 3.1±2.4±0.8
Dilepton 5.9±1.1±0.7 1.3±0.5±0.2 0.5±0.2±0.1 0.1±0.1±0.3
1 τ 9.6±0.9±0.6 3.1±0.6±0.3 1.1±0.3±0.2 0.8±0.2±0.1
QCD 0.0±0.2±0.4 0.0±0.2±0.4 0.0±0.2±0.4 0.0±0.2±0.4
Z+jets (MC) 0.7±0.6±0.7 <0.1 <0.1 <0.1
Total (predicted) 57.9±8.9±5.6 16.2±5.0±2.0 4.2±2.4±0.8 4.0±2.4±1.0
Data (observed) 48 (27,21) 16 (7,9) 5 (4,1) 2 (1,1)

Table 4.

Event yields for the Lepton Spectrum method for H T>1000 GeV. Further details are given in the Table 2 caption

Inline graphic range [GeV] [250, 350) [350, 450) [450, 550) ≥550
MC yield
1 13.4±0.6 4.8±0.4 2.1±0.3 1.3±0.2
Dilepton 2.7±0.2 1.0±0.1 0.3±0.1 0.2±0.1
1 τ 2.1±0.2 0.7±0.1 0.5±0.1 0.4±0.1
Z+jets 0.5±0.5 <0.1 <0.1 <0.1
Total (MC) 18.8±0.9 6.4±0.5 2.9±0.3 1.9±0.2
SUSY LM3 (MC) 38.1±1.4 18.3±1.0 7.0±0.6 5.5±0.5
SUSY LM6 (MC) 7.0±0.2 6.0±0.2 4.6±0.1 5.2±0.2
Data-driven prediction
1 11.7±4.6±1.8 5.5±3.6±1.0 2.0±2.2±0.6 3.1±2.3±1.0
Dilepton 1.2±0.6±0.1 0.4±0.4±0.1 0.2±0.2±0.1 0.1±0.2±0.2
1 τ 3.0±0.5±0.5 0.9±0.3±0.2 0.4±0.2±0.2 0.8±0.2±0.2
QCD 0.0±0.1±0.1 0.0±0.1±0.1 0.0±0.1±0.1 0.0±0.1±0.1
Z+jets (MC) 0.5±0.5±0.5 <0.1 <0.1 <0.1
Total (predicted) 16.4±4.7±1.9 6.8±3.6±1.0 2.6±2.2±0.6 4.0±2.4±1.0
Data (observed) 14 (7,7) 4 (1,3) 0 (0,0) 2 (1,1)

Estimation of non-single-lepton backgrounds

The non-single-lepton backgrounds include dilepton events in several categories, events with W→τν followed by τ decays (in either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} or W+jets events), and QCD multijet processes. These subdominant backgrounds are estimated using control samples in data, in conjunction with information from simulation. The contribution from Drell-Yan and Z+jets is very small and is estimated directly from simulation.

Dilepton background events (including the τ as one of the leptons) contain at least two neutrinos, so these events can be important in the tails of the Inline graphic distributions. These backgrounds are divided into the following categories: (i) 2 events with one lost or ignored lepton (=e,μ), (ii) +τ events with τ→hadrons, and (iii) +τ events with τ→lepton. A lost lepton is one that is either not reconstructed or is out of the detector acceptance. An ignored lepton is one that is reconstructed but fails either the lepton-identification requirements (including isolation) or the p T threshold requirement.

To estimate the background from dilepton events with lost or ignored leptons, we compute the ratio of the combined yield of dilepton events in the ee, eμ, and μμ channels in data to the corresponding combined yield in simulated event samples. This ratio, which is 0.91±0.07 for H T≥500 GeV, 0.93±0.15 for H T≥750 GeV, and 0.87±0.37 for H T≥1000 GeV, is used to rescale the Inline graphic distribution of dilepton events that appear in the signal region in simulation. (Events within 20 GeV of the nominal Z mass are excluded in the e+e and μ + μ channels.) This approach is used because the dilepton control sample in data is small, and using it to obtain the shapes of Inline graphic distributions would result in large statistical uncertainties. For all Inline graphic bins above 250 GeV, the predicted yield from this background contribution is less than 6 events, and for all Inline graphic bins above 350 GeV, the yield is at or below 1 event. The Inline graphic distribution associated with the reconstructed dilepton events in data is well described by the simulation.

Dilepton events can also involve τ decays, either τ→ hadrons or τ. The Inline graphic distributions in the dilepton events in data, when suitably modified to reflect the presence of a leptonic or hadronic τ decay, provide an accurate description of the shape of the Inline graphic distribution of these backgrounds. Thus, to estimate the shape from the τ→ hadrons background, we effectively replace a lepton in a reconstructed dilepton event with a hadronic τ jet. Both hadronic and leptonic τ response functions are used, providing a probability distribution for a τ to produce a jet or a lepton with a given fraction p T(jet)/p T(τ) or p T()/p T(τ). These response functions, obtained from simulation, are computed in bins of p T(τ). This procedure can change the total number of jets above threshold in the event, as well as other properties such as H T and Inline graphic, which are recalculated. Simulated event samples are used to determine, for each of these processes i, the ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{i}=N_{\mathrm{feed}}^{i}/N_{\mathrm{control}}$\end{document} of the number of events observed in the single-lepton channel to the number of events in the control sample, as a function of Inline graphic. This procedure effectively normalizes all such contributions to the control samples in data. For all Inline graphic bins above 250 GeV, the number of dilepton events with a τ→hadrons decay is predicted to be about 7 events or less and is much smaller in the higher Inline graphic bins. The number of dilepton events with a τ decay is predicted to be less than 3 events for all Inline graphic bins above 250 GeV and is much smaller in the higher Inline graphic bins.

Estimates for the τ single-lepton backgrounds from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets processes are based on a procedure similar to that used for the dilepton backgrounds, but in this case the single-lepton sample itself is used as the control sample. The Inline graphic distribution obtained by applying the τ response function to the data is rescaled by a ratio from simulation that gives the yield of τ background events divided by the yield of events in the single-lepton control sample, as a function of Inline graphic. The number of background events from the single τ contribution falls from 33 for H T≥500 GeV and Inline graphic to 1.1 event for H T≥500 GeV and Inline graphic.

The background predictions in data are shown in Fig. 2, where the expectation based on simulation is shown for comparison. The total predicted dilepton plus single τ background yield ranges from about 50 events for H T≥500 GeV and Inline graphic to about 1 event for H T≥1 TeV and Inline graphic. All of these predictions, as well as the expectations from simulation, are presented in Tables 2, 3, and 4, which are discussed in more detail in Sect. 5.4.

Fig. 2.

Fig. 2

Predictions for dilepton and τ backgrounds after requiring H T≥750 GeV: control samples in data (green points with error bars) vs. MC predictions (black solid histogram) for (top) dilepton background and (bottom) τ background. The MC prediction has been scaled to the integral of the data prediction (Color figure online)

Background from QCD multijet events is suppressed to a level well below 1 event in nearly all signal regions, as shown in Tables 2, 3, and 4. The QCD multijet background is determined by first defining a control sample with small missing transverse momentum (Inline graphic) and with a lepton impact parameter relative to the beam spot |d 0|>0.02 cm. These requirements select a sample with little contamination from other SM processes such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets processes. Using this control sample, we measure the shape of the distribution in the combined relative isolation variable, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{rel}}^{\mathrm{comb}}$\end{document} (see Sect. 4). The shape of this distribution has very little correlation to Inline graphic or to the lepton impact parameter (d 0), and so can be applied in the high-Inline graphic signal regions. For each signal region in the data, we determine the background at low values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{rel}}^{\mathrm{comb}}$\end{document} by first scaling the measured QCD multijet background shape in the relative isolation variable to the high-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{rel}}^{\mathrm{comb}}$\end{document} sideband of the signal region. The shape is then used to extrapolate the yield to the low-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{rel}}^{\mathrm{comb}}$\end{document} signal region. In the high-Inline graphic signal regions, some non-QCD SM background can be present at high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{rel}}^{\mathrm{comb}}$\end{document}, where the QCD background shape is normalized. We therefore subtract the estimated background from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}, W+jets, and Z+jets from this region. These yields are taken from simulation, with systematic uncertainties determined from a comparison with a control region in the data.

Results from the Lepton Spectrum method

Tables 2, 3, and 4 compare the background yields predicted from the control samples in data with the yields obtained directly from simulation for H T≥500 GeV, H T≥750 GeV, and H T≥1000 GeV, respectively. We observe that the single-lepton background is the dominant contribution in all regions. The various sources of uncertainties associated with these background determinations are discussed in Sect. 9. Finally, the yields observed in the signal regions in the data, which are listed at the bottom of each table, are consistent with the total background predictions based on the control samples. Thus, we observe no evidence for any excess of events in the data above the SM contributions.

Figure 3 shows the Inline graphic distributions in data for the combined muon and electron channels, with all of the selection requirements, except that on Inline graphic itself. The distributions are shown for H T≥500 GeV, H T≥750 GeV, and H T≥1000 GeV, on both linear and logarithmic scales. The predicted Inline graphic distribution (green-bar histogram) is a sum over three sources: single-lepton backgrounds (from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}, single-top, and W+jets events), dilepton background from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}, and single-τ events (from both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets processes). The vertical span of the green bar corresponds to the statistical uncertainty on the background prediction. (The systematic uncertainties are computed in wider bins used for setting the limits and are given in Tables 2, 3, and 4.) In each signal region, the blue histogram shows the contribution from the dilepton and single-τ backgrounds only. It is evident that the single-lepton background is dominant in all cases. The Inline graphic distributions for the SUSY benchmark models LM3 and LM6 are overlaid (not summed) for comparison. Systematic uncertainties and the interpretation are presented in Sect. 9.

Fig. 3.

Fig. 3

Lepton Spectrum method: observed Inline graphic distributions in data (filled points with error bars) compared with predicted Inline graphic distributions (green bars) in the combined electron and muon channels, on linear (left) and logarithmic (right) scales. Three different H T thresholds are applied: H T≥500 GeV (upper row), H T≥750 GeV (middle row), and H T≥1000 GeV (lower row) (Color figure online)

Lepton Projection method

Overview of the Lepton Projection method

The Lepton-Projection (LP) method uses the difference between SM and SUSY processes in the correlation of the lepton transverse momentum and the missing transverse momentum. As previously discussed, in the SM processes the Inline graphic corresponds to the neutrino in the decay of the W boson, either in W+jets or in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events. The kinematics of W decays are dictated by the V–A nature of the W coupling to leptons and the helicity of the W boson, as discussed in Sect. 3. Since W bosons that are produced with high transverse momentum in W+jets events exhibit a sizable left-handed polarization, there is a significant asymmetry in the p T spectra of the neutrino and charged lepton. A smaller asymmetry is expected in W bosons from t quark (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{\mathrm{t}}$\end{document} antiquark) decays, which yield W bosons which are predominantly longitudinally polarized with smaller left-handed (right-handed) components for W+ (W).

We have measured the fraction of the helicity states of the W boson using an angular analysis of leptonic W decays [21]. Since the total momentum of the W boson in these decays, and therefore its center-of-mass frame, cannot be accurately determined because the momentum of the neutrino along the beam axis cannot be measured, an observable that depends only on transverse quantities is used. A variable that is highly correlated with the cosine of the polar angle (with respect to the W boson flight direction) in the center-of-mass frame of the W boson is the “lepton projection variable”:

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L_{\mathrm{P}}= \frac{\boldsymbol{p}_{\mathrm{T}}(\ell) \cdot\boldsymbol{p}_{\mathrm{T}}({\mathrm{W}})}{|\boldsymbol{p}_{\mathrm{T}} ({\mathrm{W}})|^2}, $$\end{document} 3

where p T() is the transverse momentum of the charged lepton and p T(W) is the transverse momentum of the W boson. The latter quantity is obtained from the vector sum of the charged lepton transverse momentum and the missing transverse momentum in the event.

Since SUSY decay chains result in large values of Inline graphic, and often result in relatively low values of the lepton momentum as well, the L P distribution for SUSY events tends to peak near zero, whereas W+jets and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} yield a broad range of L P values. This behavior is illustrated in Fig. 4, which compares the L P distribution from both SM processes and from two representative SUSY benchmark points (LM3 and LM6).

Fig. 4.

Fig. 4

Distribution of L P in SUSY and standard model processes from simulation. Top: all distributions are normalized to the integrated luminosity. The different contributions from SM processes are shown, whereas for SUSY two benchmark points, LM3 and LM6, are displayed. Bottom: the same distributions normalized to unity. The SM distribution is the sum of all the individual SM processes shown in the top pane. The quantity Inline graphic is discussed in the text

In the L P method, two regions in L P are defined: the region with L P<0.15 is used as the signal region; the region with L P>0.3 is used as the control region, i.e., a sample that is depleted in the signal expected and is instead dominated by SM processes. These regions are selected using simulated event samples of W+jets, Z+jets, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}, that are collectively referred to as electroweak (EWK) processes in what follows, as well as with simulated SUSY events with SUSY particle masses near the region currently under exploration.

Background estimation in the LP method

The key ingredient of the analysis is the estimate of the number of events in the signal region from the SM processes. We define a translation factor,

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_\mathrm{CS} = \frac{N_\mathrm{MC}(L_{\mathrm{P}}<0.15)}{N_\mathrm {MC}(L_{\mathrm{P}}>0.3)}, $$\end{document} 4

which is the ratio of the number of events in the signal and control regions for the EWK processes. The translation factor is obtained from MC simulation of the EWK processes, and the uncertainties on this factor are included in the systematic uncertainty of the background estimate. In the case of muons, where the background from QCD multijets is negligible, the total number of events predicted from SM processes in the signal region, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{SM}}^{\mathrm{pred}}(L_{\mathrm{P}}<0.15)$\end{document}, can be determined directly from the number of events observed in the data in the control region, N data(L P>0.3):

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_\mathrm{SM}^\mathrm{pred}(L_{\mathrm{P}}<0.15) = R_\mathrm{CS} \cdot N_\mathrm{data}(L_{\mathrm{P}}>0.3). $$\end{document} 5

In the case of the electrons, the presence of events from QCD multijet processes necessitates an independent evaluation of this background prior to the application of the translation factor for EWK processes.

The number of events estimated with this method is then compared to the number of events observed in the data in the signal region, N data(L P<0.15), for indications of an excess of events over the SM expectation. The analysis is performed in different regions of the event mass scale. To characterize the latter without affecting the correlation of the charged lepton and the neutrino in SM events, the scalar sum of the lepton transverse momentum and the missing transverse momentum, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document}, is used: Inline graphic. For W decays, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}\approx p_{\mathrm{T}}({\mathrm{W}})$\end{document} at large values of p T(W).

In order to make the search optimization less dependent on the unknown energy scale of a new physics signal, the analysis is performed in disjoint ranges of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} and the results in these ranges are combined. In addition, the selection is also binned in a second dimension, the H T variable, defined in Eq. (2).

As indicated in Table 1, the event selection used in this analysis is slightly different from the corresponding one in the LS analysis. To increase the sensitivity to SUSY decays, this analysis requires three or more jets. While this results in a significant increase in W+jets events, the additional SM background is mostly concentrated in the control region in L P.

The event yields in the muon and electron channels, as predicted from simulation, are shown in Table 5. As discussed previously, the dominant backgrounds to the lepton plus jets and Inline graphic signature arise from the production and decay of W+jets and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}. The production of single W bosons in association with jets, and with large transverse momenta, is in general the larger of the two, especially at lower jet multiplicities. The majority of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} background arises from semi-leptonic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} decays, with fully leptonic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} decays in which a lepton is either ignored or not reconstructed contributing about 20 % of the total \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} background.

Table 5.

Expected event yields in the signal region (L P<0.15) from simulation. These yields are for H T>500 GeV. These MC values are only listed for illustration purposes

L P<0.15 Muons: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} range [GeV] Electrons: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} range [GeV]
[250–350] [350–450] [450–∞] [250–350] [350–450] [450–∞]
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} () 50.0±1.0 15.3±0.5 4.8±0.3 37.9±0.8 11.0±0.4 3.6±0.2
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} (ℓℓ) 12.4±0.4 3.9±0.2 1.2±0.1 10.4±0.4 2.9±0.2 0.8±0.1
W 66.2±2.0 35.6±1.4 26.0±1.2 48.9±1.7 24.2±1.2 20.9±1.1
Z 2.1±1.0 0.4±0.4 0.0±0.2 1.4±0.8 0.0±0.2 0.0±0.2
Total MC 130.8±2.4 55.3±1.6 32.0±1.3 98.6±2.1 38.1±1.3 25.3±1.1
LM3 136.8±3.8 89.1±3.1 53.9±2.4 111.7±3.4 70.8±2.7 47.0±2.2
LM6 8.4±0.2 11.0±0.2 24.9±0.3 6.7±0.2 8.5±0.2 20.5±0.3

A source of background, which is not listed in Table 5, stems from QCD multijet events in which a jet is misreconstructed as a lepton. The simulation indicates that the magnitude of this background is small in the control region and negligible in the signal region. Nevertheless, since the uncertainties in simulating these backgrounds can be significant, we use control data samples to estimate the background in the muon and electron channels.

To estimate the background from QCD multijets in the muon final state, we use the relative combined isolation, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{comb}}^{\mathrm{rel}}$\end{document}, of the muon. Multijet events are expected to populate the region at high values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{comb}}^{\mathrm{rel}}$\end{document}, whereas muons from SUSY decays are isolated and thus have low values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{comb}}^{\mathrm{rel}}$\end{document}. We employ an additional control data sample, which is specially selected to be enriched in QCD multijets, to determine the ratio of multijet events at low values of the relative isolation. Using this ratio and the number of multijet events expected in the control region of the sample passing the preselection requirements, we estimate the background from multijet events in the signal region to be always smaller than 1 % of the EWK backgrounds. This level of background is negligible and is thus ignored in what follows.

The main sources of electrons in QCD multijet events are misidentified jets and photon conversions. This background is expected to be more substantial than the corresponding one in the muon sample, and its estimate exhibits a large dependence on the details of the simulation. For this reason, we estimate this background from control samples in data. The method relies on the inversion of one or more of the electron identification requirements in order to obtain a sample of anti-selected events, which is dominated by jets misidentified as electrons. We find that the inversion of the requirements on the spatial matching of the calorimeter cluster and the charged-particle track in pseudorapidity and azimuth leaves the relative fraction of the different background sources in QCD multijets unchanged. Moreover, to increase the number of events in this control sample, the requirements on d 0 and d z are removed, while the isolation requirement is loosened. These changes to the event selection have a negligible effect on the L P distribution in the data. In the simulated event samples, it is found that the L P distribution from the control sample events provides a good description of the corresponding distribution from QCD background passing all selection requirements.

The L P distribution obtained with this control sample is used as a template to fit, along with the L P distribution from EWK processes, the L P distribution in the data. In this fit, the EWK template is taken from simulation. This approach, which provides a template obtained from data for the QCD contamination, was applied in the measurement of the polarization of high-p T W bosons [21]. The fit is performed in the control region (L P>0.3), where the possible presence of signal is highly suppressed. The numbers of QCD and EWK events obtained by the fit are used to estimate the total SM contamination in the signal region (L P<0.15). The method for estimating the number of SM events expected in the signal region is applied in each range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} and H T.

The method for estimating the SM expectation in the signal region is checked using two different control samples, where both the fit and signal regions have a negligible expected SUSY yield. The first sample is defined as all events satisfying the preselection requirements but confined to low values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document}: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$150<S_{\mathrm{T}}^{\mathrm{lep}}<250~\mathrm{GeV}$\end{document}. The method described above is employed to predict the number of events expected in the signal region for both muons and electrons. This prediction is found to be fully consistent with the number of events observed in the data in the signal region. The results of the fits and the yields of QCD and EWK events in the region of low \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} (<250 GeV) are displayed in Fig. 5 for the electron and muon samples. As can be seen in Fig. 5, the QCD contamination in the signal region, L P<0.15, is negligible, as expected, since low values of L P favor events with low-p T leptons and high Inline graphic. The second sample, used only for events with muons, is collected with a separate trigger without any requirements on H T or Inline graphic. The muon transverse momentum threshold is raised to p T(μ)>35 GeV, while the H T threshold is lowered from 500 GeV to 200 GeV and the jet multiplicity requirement is reversed, to be fewer than three jets. Given these requirements on H T and on the jet multiplicity, this control sample is dominated by SM processes. It is found that the estimated background agrees well with the number of events seen in the signal region L P<0.15.

Fig. 5.

Fig. 5

Fit results on data for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$150 < S_{\mathrm{T}}^{\mathrm{lep}}<250~\mathrm{GeV}$\end{document}, in the muon (top) and electron (bottom) search samples. The fit is performed in the control region (L P>0.3) and the result is extrapolated into the signal region (L P<0.15)

Results of the LP method

The L P distributions in three ranges of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document}, are displayed in Fig. 6 for muons (top) and electrons (bottom). Tables 6 and 7 list the numbers of events observed and the number of events expected from all SM processes as presented above, in the signal region, for the muon and electron channels, respectively. The predictions, along with the numbers of events observed in each range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} and H T, are also displayed graphically in Fig. 8 for muons and in Fig. 7 for electrons. The uncertainties quoted in Table 7 correspond to the statistical uncertainty of the fit, while the predictions displayed in Fig. 7 include the total statistical and systematic uncertainty.

Fig. 6.

Fig. 6

Data and fit results for the predictions for the L P distribution, for events in the search sample, in different \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} regions. Top plots for the muon channel; bottom plots for the electron channel. Left: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$250<S_{\mathrm{T}}^{\mathrm{lep}}<350~\mathrm{GeV}$\end{document}, center: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$350<S_{\mathrm{T}}^{\mathrm{lep}}<450~\mathrm{GeV}$\end{document}, and right: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}>450~\mathrm{GeV}$\end{document}

Table 6.

Event yields in data and MC simulation for the muon sample. The results in the columns labeled “Total MC” are listed for reference only. The corresponding uncertainties statistical only

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} range [GeV] Total MC Data Total MC SM estimate Data
Control region (L P>0.3) Signal region (L P<0.15)
500<H T<750 GeV
[150–250) 1465±11 1297 261±3.2 261±7±24 258
[250–350) 452±5.2 383 99.3±2.1 84.1±4.2±7.3 78
[350–450) 154±3.1 128 40.2±1.4 33.3±3.0±2.6 23
≥450 59.2±1.8 50 18.6±1.0 15.7±2.2±2.0 16
750<H T<1000 GeV
[150–250) 280±4.1 218 52.4±1.6 40.8±2.9±3.5 46
[250–350) 91.9±2.1 88 22.3±0.9 21.3±2.3±2.2 22
[350–450) 34.6±1.3 25 10.3±0.6 7.5±1.5±1.0 8
≥450 26.7±1.4 18 8.8±0.6 5.9±1.4±0.7 7
1000 GeV<H T
[150–250) 92.3±2.5 76 20.5±1.0 16.9±1.9±1.7 15
[250–350) 32.9±1.3 31 8.7±0.8 8.2±1.5±1.0 8
[350–450) 10.9±0.7 7 4.6±0.4 2.9±1.1±0.6 1
≥450 11.9±0.8 12 4.6±0.5 4.6±1.4±0.7 2

Table 7.

Event yields in data and predictions of the numbers of EWK and QCD events for the electron sample in bins of H T. The sum of predicted EWK events and predicted QCD events in the control region is constrained to be equal to the total number of data events. The background estimate used in comparing to the yields in the data is the result of the procedure described earlier and is listed in the row labeled “SM estimate”. The uncertainties for the QCD and EWK background estimates are statistical only. The uncertainties shown for the SM estimate are first the statistical uncertainty from the control region fit and second all other systematic uncertainties

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} range [GeV] QCD EWK Data QCD EWK SM estimate Data
Control region (L P>0.3) Signal region (L P<0.15)
500<H T<750 GeV
[150–250) 184±33 1122±45 1306 9.1±1.6 170±7 179±7±18 204
[250–350) 66±15 334±22 400 2.1±0.5 63.3±4.1 65.3±4.3±5.9 71
[350–450) 26.6±7.6 93±11 120 0.3±0.1 19.2±2.3 19.4±2.4±2.9 29
≥450 17.1±5.1 33.9±6.6 51 0.2±0.0 9.0±1.8 9.2±1.9±1.7 11
750<H T<1000 GeV
[150–250) 39±15 210±20 249 1.9±0.7 35.1±3.3 37.0±3.5±4.8 37
[250–350) 5.8±5.5 59.2±9.1 65 0.2±0.2 11.0±1.7 11.2±2.0±1.8 13
[350–450) <0.1 26.0±5.1 26 <0.1 6.3±1.2 6.3±1.2±1.5 5
≥450 8.7±3.4 22.3±5.0 31 0.1±0.0 6.7±1.5 6.8±1.6±1.5 5
1000 GeV<H T
[150–250) 14.9±7.7 62±10 77 0.7±0.4 11.7±1.9 12.5±2.2±2.4 9
[250–350) 10.4±4.3 20.6±5.4 31 0.3±0.1 4.5±1.2 4.8±1.5±1.1 8
[350–450) 0.5±1.7 11.5±3.7 12 <0.1 2.6±0.8 2.6±1.2±0.9 1
≥450 4.4±2.5 6.6±2.9 11 0.0±0.0 2.5±1.1 2.6±1.3±0.9 1

Fig. 8.

Fig. 8

Comparison of the number of events observed in the data and the expectations from the background estimation methods for the muon channel, in the different \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} bins. Left: 500<H T<750 GeV; Center: 750<H T<1000 GeV; Right: H T>1000 GeV. The error bars indicate the statistical uncertainty of the data only, while the green band indicates the total statistical and systematic uncertainty on the background estimate (Color figure online)

Fig. 7.

Fig. 7

Comparison of the number of events observed in the data and the expectations from the background estimation methods for the electron channel, in the different \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} bins. Left: 500<H T<750 GeV; Center: 750<H T<1000 GeV; Right: H T>1000 GeV. The error bars indicate the statistical uncertainty of the data only, while the green band indicates the total statistical and systematic uncertainty on the background estimate (Color figure online)

All estimates of the total contribution expected from SM processes in the various bins in (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}},H_{\mathrm{T}}$\end{document}) are consistent with the numbers of events observed in the data, with no visible excess from a potential SUSY signal. The result is interpreted as a limit in SUSY parameter space in the context of the CMSSM in Sect. 9.

The Artificial Neural Network method

Overview of the method

The Artificial Neural Network (ANN) method uses a multi-variate analysis to combine several event characteristics, other than Inline graphic, into a single variable that distinguishes signal from background. Signal events then preferentially populate a signal region in the two-dimensional plane of the ANN output (z ANN) and Inline graphic, and the sidebands in this plane provide an estimate of the residual background.

Four input variables drive the ANN. The first two are n jets, the number of jets with p T>40 GeV, and H T, the scalar sum of the p T of each jet with p T>40 GeV. The SUSY signal typically has heavy particles decaying via complex cascades, and as such, is likely to produce more jets and larger H T than SM backgrounds. The third variable is Δϕ(j1,j2), the angle between the two leading p T jets in the transverse plane, which makes use of the greater likelihood that the two highest p T jets are produced back-to-back in SM than in SUSY events. The final variable is M T, the transverse mass of the lepton and Inline graphic system. In \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events, the lepton and Inline graphic generally arise from the decay of a W boson, and as a result, M T peaks near the W boson mass, with larger values arising only when there are additional neutrinos from τ or semileptonic decays. By contrast, in SUSY events, M T tends to be greater than the W mass because of Inline graphic due to undetected LSPs.

Figure 9 shows the distributions of these variables for simulated SM and SUSY events. The most powerful input variable is M T; n jets and H T also have considerable discriminating power. The Δϕ(j1,j2) variable is weaker, but it still improves the sensitivity of the search. Lepton p T also discriminates between the SM and SUSY, but it is not included in the ANN because its strong correlation with Inline graphic in the SM would spoil the background estimate. Additional variables either do little to improve sensitivity or introduce a correlation between z ANN and Inline graphic. The input variables have similar distributions in the muon and electron channels, so we choose to train the ANN on the two channels combined, and use the same ANN for both. In general, the SM simulation describes the data adequately apart from a possible small structure near 130 GeV in the M T distribution. Reweighting the simulation to match the M T distribution in data does not affect the results of the analysis.

Fig. 9.

Fig. 9

The distributions of n jets, H T, Δϕ, and M T for data (solid circles), simulated SM (stacked shaded histograms), LM3 (open circles), and LM6 (open triangles) events after preselection. The small plot beneath each distribution shows the ratio of data to simulated SM yields. The muon and electron channels are combined

The ANN infrastructure uses standard Root utilities [42]. During training, weights are determined that minimize the root-mean-square deviation of background events from zero and signal events from unity. For the SUSY parameter space under study, our sensitivity depends only mildly on the details of the signal sample that trains the ANN. Specifically, for LM points 0 through 13 [30], the sensitivity is comparable (less than 30 % variation) whether the ANN is trained on LM0, LM6 or LM9, even though these three training samples have rather different characteristics. We select LM0 for training because it gives the best overall performance. The SM simulation provides the background sample.

Figure 10 compares the distributions of z ANN for data and SM simulation for all events surviving the preselection. The two distributions are consistent within the uncertainties. The SM contribution is concentrated at small values of z ANN, while the LM3 and LM6 SUSY distributions, which are also shown, extend to high values of z ANN where the SM is suppressed.

Fig. 10.

Fig. 10

The z ANN distribution of the data (solid circles) and simulated SM (stacked shaded histograms), LM3 (open circles), and LM6 (open triangles) events, after preselection. The small plot beneath shows the ratio of data to simulated SM yields

We define two signal regions in the two-dimensional Inline graphic and z ANN plane. One region, referred to as the “low-Inline graphic” signal region, has z ANN>0.4 and Inline graphic, while the other, the “high-Inline graphic” signal region, has the same z ANN range, but Inline graphic. The high-Inline graphic signal region minimizes the probability that the expected background fluctuates up to a LM6 signal when signal contamination is taken into account. We observe 10 events in the low-Inline graphic signal region and 1 event in the high-Inline graphic signal region.

Background estimation using the ANN sidebands

The sidebands in the two dimensional plane of Inline graphic and z ANN provide a strategy for estimating the background. The signal and sideband regions are shown in Fig. 11 and are denoted A, B, C, and D for the low-Inline graphic signal region and A, B′, C, and D′ for the high-Inline graphic signal region. The choice of boundaries for the sideband regions balances the competing needs of statistics and insensitivity to signal contamination against preserving similar event compositions in the signal and sideband regions.

Fig. 11.

Fig. 11

The yields of simulated SM (left) and LM6 (right) events in the Inline graphic versus z ANN plane. The regions D and D′ are the low-Inline graphic and high-Inline graphic signal regions. The sideband regions are also indicated

The predicted yield in region D is given by

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_{\mathrm{D},\mathrm{pred}} = \frac{ N_{\mathrm{B}} \times N_{\mathrm{C}} }{ N_{\mathrm{A}} }, $$\end{document} 6

where N i is the yield in region i, and the predicted yield in region D′ is defined similarly. This procedure is equivalent to using the Inline graphic distribution of the z ANN sideband regions (A, B, and B′) as a template for the Inline graphic distribution of events with high z ANN (C, D and D′), normalized using the yields in regions A and C. We test this estimation procedure using SM simulation: Fig. 12 (top) shows that the Inline graphic distributions for low and high z ANN are similar.

Fig. 12.

Fig. 12

The Inline graphic distributions of events in the z ANN signal region (solid circles) and sideband (green bars) for simulated SM (top) and data (bottom) events. The distributions are normalized in the Inline graphic sideband, Inline graphic (regions A and C for the two distributions respectively). The rightmost histogram bin includes overflow. The small lower plots show the ratio of normalized sideband to signal yields (Color figure online)

If a signal is present, it enters primarily in the signal regions D and D′, but there are also significant contributions relative to the SM in regions B and B′, somewhat increasing the predicted backgrounds in D and D′. This effect is accounted for in the final results.

Table 8 summarizes the event yields in the sideband subtraction regions for the various components of the SM background. The W+jets and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} dominate in all the regions, though their relative proportion varies. The W+jets events are most important at low z ANN since M T, which largely drives z ANN, tends to peak near the W-boson mass. Because the W bosons (and hence their daughters) can be highly boosted, these events extend to very high values of Inline graphic. As seen in Fig. 10, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events are more likely to have high values of z ANN than are W+jets events; this is because of the presence of dilepton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events, in which both W bosons (from the top quark pair) decay leptonically, but only one lepton is identified (dilepton ()), giving large M T. There is also a small contribution from events in which the lepton comes from the decay of a τ produced from a top quark decay, with the other top quark decaying either leptonically (dilepton (τ)) or hadronically (single τ). The remaining small backgrounds come from single-top-quark, QCD multijet and Z+jets events.

Table 8.

Event yields for the sideband (SB) and signal regions used in the ANN method. The uncertainties listed are statistical only

graphic file with name 10052_2013_2404_Tab8_HTML.jpg

There are too few events in the simulated QCD multijet and Z+jets samples to populate the high Inline graphic regions (B, B′, D and D′). For the results quoted in Table 8 for QCD multijet and Z+jets events, we employ an extrapolation technique based on loosening the z ANN and Inline graphic requirements. The extrapolated numbers for all the regions are consistent with those obtained from the simulated samples. The simulated yields in the sideband and signal regions indicate that QCD multijet and Z+jets events are negligible.

The total SM simulation yields agree well with data in all regions, suggesting that the data share the main features described above. The z ANN and Inline graphic distributions are shown in Fig. 13.

Fig. 13.

Fig. 13

Distributions of Inline graphic for (a) 0.2<z ANN<0.4 and (bz ANN>0.4, and distributions of z ANN for (cInline graphic and (dInline graphic. The samples shown are data (solid circles), simulated SM (stacked shaded histograms), LM3 (open circles), and LM6 (open triangles) events. The small plot beneath each distribution shows the ratio of data to simulated SM yields

Results of the ANN method

Figure 12 (top) shows the results of applying the background estimation method to the SM simulation. We find that the method correctly predicts the background within a factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa= \mathrm{D}^{\prime}/ \mathrm{D}^{\prime}_{\mathrm{pred}}$\end{document} of 0.82±0.12 (stat.) in the low-Inline graphic signal region and 0.69±0.16 (stat.) in the high-Inline graphic signal region. The modest deviation from unity results from a correlation between z ANN and Inline graphic that arises because the W+jets background, which extends to large Inline graphic values, dominates in the z ANN sideband (because it tends to have M T near the W mass), whereas dileptonic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events, with their somewhat softer Inline graphic spectrum, dominate in the z ANN signal region.

Figure 12 (bottom) shows the Inline graphic distributions of the data in the high and low z ANN regions, after normalizing in the region Inline graphic (A and C). Because the SM simulation appears to describe the data well, with, for example, consistent exponential decay constants describing the Inline graphic distributions in the ANN sidebands, we choose to scale the background prediction of the data by κ. The uncertainty in the background from the relative cross sections of SM processes and other effects is quantified in Sect. 8. In the low-Inline graphic signal region, we expect 9.5±2.2 (stat.) events, and in the high-Inline graphic signal region 0.7±0.5 (stat.) events. The observed yields are 10 and 1 events, respectively, consistent with the background prediction.

Systematic uncertainties

Systematic uncertainties affect both the background estimates and the signal efficiencies. The sources of systematic uncertainty in the background predictions vary among the three methods, both because the final event selections differ and because the background estimation methods themselves differ. The systematic uncertainties stem from lack of perfect knowledge of the detector response and from uncertainties in the properties of the SM backgrounds. Common uncertainties for all methods are described in Sect. 8.1, while details that are specific to each method are given in Sects. 8.2, 8.3, and 8.4 for the LS, L P, and ANN methods, respectively. Tables 9, 10, and 11 list the main uncertainties associated with each method. The systematic uncertainties affecting the signal efficiency and luminosity, which are largely common to all methods, are described in Sect. 8.5.

Table 9.

Sources of systematic uncertainties for the LS method and their effects on the background prediction in bins of Inline graphic. The full list of systematic uncertainties is given for H T>750 GeV, and the total uncertainties are shown for H T>500 GeV and H T>1000 GeV. Each uncertainty is expressed as a change in the ratio of the predicted to the true number of events (evaluated with simulation). Uncertainties associated with the dilepton and QCD backgrounds are discussed in the text. The total uncertainty is the individual uncertainties summed in quadrature

Inline graphic [GeV] [250–350)
(%)
[350–450)
(%)
[450–550)
(%)
≥550
(%)
H T>750 GeV
Jet and Inline graphic energy scale 11 13 14 16
Lepton efficiency 1 1 1 1
Lepton p T scale 1 2 6 2
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma(\mathrm{t}\overline{\mathrm{t}})$\end{document} and σ(W) 1 1 4 4
W polarization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} 1 1 1 1
W polarization in W+jets 3 4 12 11
Z+jets background 4 4 4 4
SM simulation statistics (K-factors) 4 7 12 17
Total systematic uncertainty 13 16 24 27
H T>500 GeV
Total systematic uncertainty 16 18 29 30
H T>1000 GeV
Total systematic uncertainty 15 18 28 32

Table 10.

Sources of systematic uncertainties for the L P method and their effects on the background prediction in bins of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} for the muon and electron channels. The full list of systematic uncertainties are given for the range 500<H T<750 GeV, and the total uncertainties are shown for the two ranges 750<H T<1000 GeV and H T>1000 GeV. The total uncertainty is the individual uncertainties summed in quadrature

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} range [GeV] [150–250)
(%)
[250–350)
(%)
[350–450)
(%)
≥450
(%)
Channel μ e μ e μ e μ e
500<H T<750 GeV
Jet and Inline graphic energy scale 6 6 4 5 5 9 9 9
Lepton efficiency 5 5 5 2 3 1 1 2
Lepton p T scale 0 1 1 2
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma(\mathrm{t}\overline{\mathrm{t}})$\end{document} and σ(W) 3 1 1 1 1 2 1 1
W polarization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} 0 1 1 1 1 1 1 2
W polarization in W+jets 2 1 2 1 2 3 3 4
Inline graphic resolution 2 2 1 1 1 2 4 4
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} (ℓℓ) 5 5 5 5 3 3 1 1
SM simulation statistics 1 1 2 2 4 5 6 7
Total systematic uncertainty 11 10 9 8 8 12 13 13
750<H T<1000 GeV
Total systematic uncertainty 9 12 10 11 13 13 12 13
H T>1000 GeV
Total systematic uncertainty 10 15 13 15 20 18 16 20

Table 11.

Sources of systematic uncertainties for the ANN method and their effects on the background prediction in bins of Inline graphic. The total uncertainty is the individual uncertainties summed in quadrature

Inline graphic range [GeV] [350–500)
(%)
≥500
(%)
Jet and Inline graphic energy scale 3 4
Lepton p T scale 3 5
Lepton efficiency 0.3 0.4
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma(\mathrm{t}\overline{\mathrm{t}})$\end{document} and σ(W) 3 2
W polarization in W+jets 1 3
W boson p T spectrum in W+jets 10 2
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} (ℓℓ) 1 7
Other backgrounds 1 1
SM simulation statistics 15 23
Total systematic uncertainty 19 26

Common uncertainties in the background predictions

The jet energy scale (JES) and its effect on Inline graphic in the event can affect the H T and Inline graphic distributions and can also lead to differences between the lepton p T spectrum and Inline graphic spectrum. To understand the effects of energy-scale variations, we vary the jet energy scale as a function of p T and η by amounts determined in independent studies of jet energy scale uncertainties [38], and corresponding to 2 GeV or less for jets with p T>40 GeV, and then recompute H T and Inline graphic. We also vary the energy scale of “unclustered” calorimeter deposits by 10 % to take into account energy not clustered into jets (this effect is very small).

The uncertainty in the lepton efficiency accounts for differences between data and simulation and uncertainties in the trigger efficiencies. The lepton efficiencies are studied using a sample of lepton pairs with invariant mass close to the Z peak, in which one lepton satisfies tight selection criteria, and the second, reconstructed with relaxed criteria, serves as a probe of the tighter reconstruction and isolation requirements (“tag-and-probe” method [43]). Discrepancies between the data and simulation for electrons are maximal at low p T (10 % effect at around 20 GeV), and we reweight events as a function of lepton p T to quantify the effect. The total lepton efficiency in data is described by simulation with an accuracy of 3 %. Studies of the trigger that separately determine the efficiencies of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\mathrm{T}}^{\mathrm{trigger}}$\end{document}, Inline graphic, and lepton requirements show that the lepton inefficiencies dominate, and amount to 2 % to 3 % for leptons that are reconstructed successfully offline. Muon p T scale uncertainties are obtained from the study of the q/p T (transverse curvature with sign given by the electric charge q) distribution of muons in Z events in data. By comparing the q/p T distribution of positive and negative muons it is possible to quantify the amount of bias in the measurement of q/p T.

The relative amount of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets background affects each analysis method through corrections obtained from simulation. The contributions from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jet have not been specifically measured in the narrow region of phase space studied in this analysis and their relative contribution must be evaluated. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} cross section is validated using an algorithm based on the reconstructed top-quark masses for both the hadronic and the leptonic top-quark decays. The uncertainty in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} cross section is determined by comparing yields in data and simulation after a selection based on top mass variables. The W+jets cross section is validated by comparing event yields between data and simulation in Z+jets events in a dedicated dilepton event selection with similar kinematics. We assign an uncertainty to the W+jets cross section based on the agreement of the data and simulation in the Z+jets sample. Using the uncertainties obtained for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets cross sections, we probe different relative contributions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events in our sample and the effect on our background predictions.

Uncertainties in the polarization fraction for the W boson, either in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} or W+jets events, must be taken into account. For the W polarization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events, the theoretical uncertainties are very small (see Sect. 3) and have negligible effect on the background predictions. The W polarization in W+jets events, which is described in more detail in Sect. 3, is more complicated than in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} production. In this case, we consider the effect of conservative variations of the helicity fractions in bins of W-boson p T and η with respect to the theoretical NLO calculations [36].

For the dilepton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} background, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} (ℓℓ), the uncertainties are evaluated somewhat differently for the different methods. In the L P and ANN methods this background is evaluated together with the same control sample as for the main single-lepton background prediction. Uncertainties in the prediction can arise from finite detector acceptance, inefficient lepton identification, and cross section uncertainties. In the LS method the dilepton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} background is not predicted using the single-lepton background prediction and separate control samples must be used. Thus the uncertainties for the dilepton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} background are estimated separately and described in the next section.

The small residual QCD multijet background is probed by inverting the requirement on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\mathrm{rel}}^{\mathrm{comb}}$\end{document} or the electron selection criteria to obtain QCD dominated control samples. Contamination from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jet events in these control samples must be considered and the uncertainties on their cross sections are the dominant uncertainty for these methods.

The Z+jets contribution to the signal regions is very small and uncertainties on this background prediction come from lepton efficiency and cross section uncertainties. In addition, for the LS method there is a small Z+jets contamination to the single-lepton control sample, which must be subtracted, and lepton efficiency and cross-section uncertainties are considered for this as well.

Lepton Spectrum method background prediction uncertainty

For the LS method, the systematic uncertainties for each of the different background predictions from control samples in data (1 , dilepton, 1 τ, QCD, and Z+jets) are included in Tables 2, 3, and 4. To determine the systematic uncertainties for the largest source of background, 1- events (arising from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document}, W+jets, and single-top processes), we evaluate deviations for the Inline graphic-dependent correction factor, which is determined from simulation and applied to the 1- background prediction (see Sect. 5.2). Table 9 gives a breakdown of the contributions of the systematic uncertainties for the 1- prediction in bins of Inline graphic and for H T>750 GeV. The uncertainties in the 1- prediction for the H T>500 GeV and H T>1 TeV signal regions are similar to those listed in Table 9. The largest source of uncertainty arises from the potential difference in the muon p T and the Inline graphic scales, because the muon p T spectrum is used to predict the Inline graphic spectrum. The statistical uncertainties in the correction factors (denoted as K-factors in Table 9) for the 1- method are slightly smaller than the combined systematic uncertainty of the correction factor. Table 9 does not include an uncertainty from jet resolution effects because this is taken into account by the smearing of the lepton p T spectra by QCD multijet Inline graphic templates (described in Sect. 5.2). For the purposes of setting limits, the total systematic uncertainty in the 1- background prediction is treated as correlated across all bins in Inline graphic.

Tables 2, 3, and 4 also list the non-single-lepton backgrounds, which account for about 25 % of the total, with a relative uncertainty of 5–10 % in the lowest-Inline graphic bin and about 30 % in the highest-Inline graphic bin. For the dilepton prediction of lost and ignored leptons (described in Sect. 5.3) the main sources of systematic uncertainty arise from the lepton reconstruction and identification efficiencies and the top-quark p T spectrum. The uncertainties on the lepton efficiencies are described in Sect. 8.1, and the uncertainty associated with the top-quark p T spectrum is determined from varying the fraction of events in the tail of this distribution in simulation in a manner consistent with the uncertainty in this tail as observed in data. This uncertainty is then propagated through the background determination procedure.

Lepton Projection method background prediction uncertainty

For the L P method, the estimate of the total number of events expected from SM processes in the signal region, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{N}_{\mathrm{SM}}^{\mathrm{pred}}(L_{\mathrm{P}}<0.15)$\end{document}, relies on the knowledge of the translation factor, R CS, as well as the number of events observed in the control region, subtracted for the QCD background, Ndata(L P>0.3). There are, therefore, two sources of uncertainty in this estimate: uncertainties in the number of events from EWK processes in the control region and uncertainty in R CS. The relative change on the predicted background from each source of systematic uncertainty is listed in Table 10 for both muons and electrons. The largest uncertainty for high \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} bins is the statistical uncertainty in the data in the control region. The second largest uncertainty comes from the JES uncertainty. The effect from the JES uncertainty is larger in the electron channel, since the JES affects also the shape of the L P distribution used in the fit of the control region. The uncertainty in the resolution of the measurement of the hadronic energy recoiling against the lepton and Inline graphic is evaluated conservatively by smearing the total recoil energy in simulation by an additional 7.5 % along the direction of the recoil and by 3.75 % in the direction orthogonal to the recoil. This decreases the resolution more than 10 % for the high recoils (above 250 GeV) of the signal region and thus covers the difference between data and simulation.

ANN method background prediction uncertainty

For the ANN method, the systematic uncertainty in the background prediction is dominated by the statistics of the simulation, which probes for bias in the background estimation. Another important uncertainty comes from the p T spectrum of the W boson in W+jets events, since it affects the Inline graphic distribution of these events, which preferentially populate the z ANN sideband. To assess the impact, we reweight the p T spectrum of W boson events, using the differences in the p T spectra of Z bosons in data and simulation as a guide. This uncertainty is driven by the statistics of the Z+jets sample. The relative proportions of W+jets and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events differ in the z ANN signal and sideband regions so the background prediction depends on their relative cross sections. Those \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} events with two leptons in the final state, only one of which is observed, have large Inline graphic and are the source of most SM events in the signal region. In addition to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} cross section, this background depends on lepton acceptance and identification inefficiencies. Additional sources of systematic uncertainty are the hadronic and leptonic energy scales. Table 11 summarizes these uncertainties.

Signal efficiency and other multiplicative uncertainties

The systematic uncertainty in the signal yield arises from the uncertainty in the signal efficiency. In general, this uncertainty is correlated across Inline graphic or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} bins. The JES component of the signal efficiency uncertainty is computed separately for each model point in CMSSM and simplified model parameter space and is correlated with the JES uncertainty in the single-lepton background prediction. The systematic uncertainties in the signal efficiency associated with lepton reconstruction and the trigger amount to 3 %. The uncertainty in the integrated luminosity is 2.2 % [44]. The systematic uncertainty in the signal efficiency, not including the JES component, is 6 % for each of the analyses.

Results and interpretation

The LS, L P, and ANN methods each yield SM background predictions that are consistent with the number of events observed in data. We therefore proceed to set exclusion limits on SUSY model parameters. All limits are computed using the modified-frequentist CLs method [45] with a one-sided profile likelihood test statistic. To interpret the absence of an observed signal, three complementary approaches are used.

Constraints on CMSSM parameter space

First, we scan over models in the CMSSM and determine whether the number of events predicted at each model point in parameter space can be excluded by the measurements. This procedure relies on the fact that the CMSSM parameter space can be described with just five parameters, and we fix three of them to commonly used values (A 0=0 GeV, μ>0, tanβ=10). Each model point has a complete SUSY particle spectrum and a well defined cross section, which typically involves several production subprocesses. The CMSSM simulated samples are initially generated using leading-order cross sections. At each point in CMSSM parameter space, the predicted yields for each production subprocess (e.g., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {g}\mathrm{g}\to \widetilde{\mathrm{g}}\widetilde{\mathrm{g}}$\end{document}) are corrected using the NLO cross sections discussed in Ref. [46]. Using the observed yield in data and the predicted background, we determine whether the CMSSM yield for the particular model point can be excluded at the 95 % confidence level (CL). This procedure is complicated by the fact that the control regions in data could potentially be contaminated by signal events. This effect is taken into account for each model by removing the expected contribution to the predicted background arising from signal contamination of the control regions.

Figures 14, 15, and 16 show the CMSSM exclusion region [47] for the three background estimation methods, evaluated in the m 1/2 vs. m 0 plane, with the values of the remaining CMSSM parameters fixed at tanβ=10, A 0=0 GeV, and μ>0. Figure 17 displays all of the results together. The excluded regions are below the plotted curves, corresponding to SUSY particle masses below certain values. For reference, the plots display curves of constant gluino and squark masses. The lines of constant gluino mass are approximately horizontal with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m(\widetilde{\mathrm{g}})\approx 2.5~m_{1/2}$\end{document}. Lines of constant squark mass are strongly curved in the m 1/2 vs. m 0 plane. At low m 0, the analyses exclude gluinos with masses up to about 1.3 TeV, but the sensitivity falls with increasing m 0. To determine the one standard deviation (σ) theoretical uncertainty on the observed limit, the signal yields are recomputed after changing each of the process-dependent SUSY production cross sections at each model point by ±1σ of their uncertainty arising from the parton distribution functions and renormalization and factorization scales [46].

Fig. 14.

Fig. 14

LS method: exclusion region in CMSSM parameter space for the H T>750 GeV selection

Fig. 15.

Fig. 15

L P method: exclusion region in CMSSM parameter space for all H T bins combined

Fig. 16.

Fig. 16

ANN method: exclusion region in CMSSM parameter space

Fig. 17.

Fig. 17

Exclusion region for the LS, L P, and ANN methods in CMSSM parameter space. Results from the low- and high-Inline graphic signal regions are combined

Constraints on simplified model parameter space

The second approach to interpretation is based on the use of simplified models [14, 15], which provide a more generic description of new physics signatures. Such models do not include a full SUSY particle spectrum, but instead include only the states needed to describe a particular set of decay chains of interest. Rather than excluding a model, the procedure is to calculate cross section upper limits on a given topological signature. (Such cross section limits can, however, be converted into limits on particle masses within the assumptions of the particular model.) Because simplified models do not describe a full SUSY spectrum, the number of free parameters is small. Furthermore, the parameters are simply the masses of the SUSY particles, in contrast to the grand-unified-theory-scale parameters used in the CMSSM. An advantage of simplified models is that, as a consequence, certain relationships between particle masses that arise with the CMSSM no longer hold, and the spectra can be much more generic.

We consider the “Topology 3 weakino” (T3w) simplified model, which involves the production of two gluinos and their decay via the mechanism shown in Fig. 18. One gluino is forced to decay into two quark jets plus the LSP (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0} $\end{document}) via the three-body decay \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\mathrm{g}}\to\mathrm{q}\bar{\mathrm{q}}\widetilde{\chi}^{0}$\end{document}, while the other gluino decays via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\mathrm{g}}\to\mathrm{q}\bar{\mathrm{q}}^{\prime}\widetilde{\chi }^{\pm}$\end{document}, followed by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{\pm}\to\mathrm{W}^{\pm}\widetilde{\chi}^{0}$\end{document}. The W± boson can then decay leptonically. The T3w model is specified by masses of the gluino, the LSP (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0}$\end{document}), and an intermediate chargino (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{\pm}$\end{document}). We calculate cross section limits as a function of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(\widetilde{\mathrm{g}})$\end{document}, assuming a fixed value for the LSP mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(\widetilde{\chi }^{0})=50~\mathrm{GeV}$\end{document} and setting the chargino mass according to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(\widetilde{\chi}^{\pm})=0.5( M(\widetilde{\chi}^{0}) + M(\widetilde {\mathrm{g}}))$\end{document}. The nominal production cross section for the gluino pair production mechanism is given in Ref. [46]. Figure 19 shows the cross sections excluded by each method for this model. The limits fluctuate significantly at low \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M(\widetilde{\mathrm{g}})$\end{document} because of the low signal efficiency in this region.

Fig. 18.

Fig. 18

Diagram for production and decay in the T3w simplified model

Fig. 19.

Fig. 19

Excluded cross sections for the LS, L P, and ANN methods for the T3w simplified model

Alternate model exclusions

The data can be interpreted using a third approach, which is applicable to models that do not fall within the scope of either the CMSSM or the simplified model discussed in this section. A model builder can investigate the sensitivity of any one of the three methods presented in this paper to a given signal hypothesis by applying the event selection requirements listed in Table 1, together with the final requirements that define the signal regions. We provide a simple efficiency model for the most important observables used in the event selections. The efficiency model can then be applied to a basic (pythia) simulation of the signal process.

The efficiency model is based on parametrizations of the efficiencies for the event selection requirements with respect to the main reconstruction objects and quantities, such as H T, Inline graphic, and lepton p T. The efficiency of the analysis for a given model can be estimated by applying these individual reconstruction efficiencies, which are given as a function of the most important parameter (such as lepton p T), to the corresponding kinematic distributions in the model. This procedure would then yield an estimate for the number of signal events from the model. Finally, the sensitivity of the analysis to the model can be obtained by comparing the yield of signal events obtained in this manner with the background yields given in this paper. Kinematic correlations (which can be model dependent) are not taken into account, but this approach nonetheless provides a first approximation to the sensitivity.

The efficiencies for each analysis object are described using “turn-on” curves, which are simply error functions,

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \epsilon(x) = \epsilon_\mathrm{plateau} \frac{1}{2} \biggl[ \operatorname{erf} \biggl(\frac{x-x_\mathrm{thresh}}{\sigma}\biggr) + 1 \biggr], $$\end{document} 7

where x represents the variable most relevant for the reconstruction of the particular object. The error function is parametrized in terms of the plateau efficiency, ϵ plateau; the turn-on threshold, x thresh; and the characteristic width of the turn-on region, σ. These parameters are obtained by fitting simulated event samples as a function of the true (generated) value.

The selection efficiency associated with the lepton reconstruction, identification, and isolation requirements is estimated as a function of lepton p T by considering muons and electrons (including those from τ decay) generated in the pythia-simulated hard-scattering process. The lepton isolation requirement has a large effect on the efficiency, which consequently depends on the number of jets in the event. To reduce the model dependence arising from this effect, two categories of leptons are considered. First, we assign zero efficiency to leptons that are within ΔR<0.4 of a quark or gluon with p T>40 GeV in the hard-scattering process. The efficiency for the remaining leptons is described by a turn-on curve whose parameters are listed in Table 12. The efficiencies are specified for both the lepton selection and for the lepton veto.

Table 12.

Efficiency-model parameters for lepton efficiencies as a function of xp T. The leptons are required to lie within the fiducial region and must satisfy the p T thresholds specified in Table 1

Lepton ϵ plateau x thresh [GeV] σ [GeV]
Muon (signal) 0.86 2.7 65
Muon (veto) 0.90 −17 75
Electron (signal) 0.74 20 61
Electron (veto) 0.83 2.3 54

The number of jets and the resulting H T value for each event are computed using information available at the generator level. The same clustering algorithm used to reconstruct jets in the data is applied to the generator-level particles. The resulting generator-level jets are required to satisfy ΔR>0.3 with respect to the leptons described above. The Inline graphic variable is estimated at the generator level from the transverse momenta of neutrinos and any new weakly interacting particles, such as the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{\chi}^{0}$\end{document}. The parametrizations of the efficiency turn-on curves for the H T and Inline graphic requirements are listed in Tables 13 and 14, respectively. For the requirements used with the LS method, the information given in these tables generally reproduces the efficiency from full simulation to within about 15 %.

Table 13.

Efficiency-model parameters for xH T

Threshold ϵ plateau x thresh [GeV] σ [GeV]
H T≥400 GeV 1.00 396 65
H T≥500 GeV 1.00 502 66
H T≥750 GeV 1.00 760 68
H T≥1000 GeV 1.00 1013 80

Table 14.

Efficiency-model parameters for Inline graphic

Threshold ϵ plateau x thresh [GeV] σ [GeV]
Inline graphic 1.00 103 41
Inline graphic 0.99 266 41
Inline graphic 0.98 375 45
Inline graphic 0.97 485 48
Inline graphic 0.94 537 44
Inline graphic 0.96 597 59

In the L P method, the variables L P and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} are functions of lepton p T and Inline graphic. The modeling of lepton p T is described above. To emulate Inline graphic, one needs to apply both a scale shift and smearing to the generated Inline graphic value. The Inline graphic scale factor is Inline graphic. The value of Inline graphic is about 0.2 at Inline graphic. It falls linearly to about 0.06 at Inline graphic, and it remains at 0.06 for Inline graphic.

In the ANN method, the preselection requirements on H T and Inline graphic are 400 and 100 GeV, respectively. The signal regions are specified by Inline graphic and Inline graphic together with z ANN>0.4, where z ANN is a function1 of n jets, H T, Δϕ(j1,j2), and M T. The efficiency turn-on curve for z ANN>0.4 is approximated by the parameter values ϵ plateau=0.98, x thresh=0.41, and σ=0.1.

With these additional procedures, the emulation of the efficiencies for the L P and ANN methods is found to be accurate to within ∼15 %, as for the LS method.

Summary

Using a sample of proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7$\end{document} TeV corresponding to an integrated luminosity of 4.98 fb−1, we have performed a search for an excess of events with a single, isolated high-p T lepton, at least three jets, and large missing transverse momentum. To provide a robust and redundant determination of the SM backgrounds, three methods are used, each of which relies primarily on control samples in the data.

The Lepton Spectrum (LS) method exploits the relationship between two key observables, the lepton p T distribution and the Inline graphic distribution. In the dominant SM background processes, which have a single, isolated lepton, this connection arises from the fact that the lepton and neutrino are produced together in the two-body decay of the W boson, regardless of whether the W is produced in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} or W+jets events. In many SUSY models, however, the Inline graphic is associated with the production of two neutralinos, which decouples Inline graphic from the lepton p T spectrum. Smaller backgrounds arising from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} dilepton events, from τ decays in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} or W+jets events, and from QCD multijet processes are also estimated using control samples in the data. In the sample investigated with this method, at least four jets are required, which helps to suppress the background from W+jets events. Nine signal regions are considered, specified by three thresholds on H T and three bins of Inline graphic. The observed yields in each region are consistent with the background estimates based on control samples in the data.

The Lepton Projection (L P) method exploits information on the W-boson polarization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{t}\overline{\mathrm{t}}$\end{document} and W+jets events. The dimensionless L P variable itself is sensitive to the helicity angle of the lepton from W decay, but it also provides discrimination between signal and background through the ratio of the lepton p T and the Inline graphic values, which is small in SUSY-like events. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document} variable maps out a diagonal line in the plane of lepton p T vs. Inline graphic and reflects the W transverse momentum for the boosted W boson. The L P distributions are studied in bins of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{T}}^{\mathrm{lep}}$\end{document}, and H T, and at least three jets are required. In each signal region, the data are in agreement with expectations from the SM.

The artificial neural network (ANN) method provides a means to obtain the Inline graphic distribution of background events in data by constructing a neural network variable z ANN, which has a very small correlation with Inline graphic. This variable also provides strong discrimination between signal and background events, so that the background regions do not suffer from large signal contamination in the models considered. A key element of the z ANN variable is the transverse mass of the lepton-Inline graphic system, but additional variables, such as the number of observed jets, play a role as well. In the ANN analysis, no excess of events is observed in the signal regions with respect to the SM background prediction.

Because these methods probe extreme kinematic regions of the background phase space, the use of redundant approaches provides confidence in the results. Although the LS and L P methods both make use of information on the W-boson polarization in the background, they are based on different kinematic variables and have different signal regions. The LS method breaks the background into several pieces (single lepton, τ, dilepton, and QCD) and provides a direct background prediction for the Inline graphic distribution. In contrast, the L P method defines a powerful kinematic variable that is used to obtain a global background prediction by extrapolating an overall background shape from a control region into the signal region. The ANN method similarly uses a global approach to estimating the background. The neural-net variable incorporates information used in neither of the other two methods.

The results from each method are interpreted in the context of both the CMSSM and a so-called simplified model, T3w, which has a minimal SUSY particle spectrum. The CMSSM limits exclude gluino masses up to approximately 1.3 TeV in the part of the parameter space in which m 0<800 GeV, but the bound gradually weakens for larger values of m 0. For the T3w simplified model, we obtain cross section upper limits as a function of gluino mass. Finally, we provide an approximate model of our signal efficiency that can be used in conjunction with a simple pythia simulation to determine whether other models can be probed by these data.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

README.txt (3 kB) (3.4KB, txt)

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation.

Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Footnotes

1

See Online Supplementary Material for a C++ function that evaluates the artificial neural network based on the values of the four input variables.

References

  • 1.CMS Collaboration Search for supersymmetry in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7$\end{document} TeV in events with a single lepton, jets, and missing transverse momentum. J. High Energy Phys. 2011;08:156. doi: 10.1140/epjc/s10052-013-2404-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. S.P. Martin, A supersymmetry primer (1997). arXiv:hep-ph/9709356
  • 3.Wess J., Zumino B. Supergauge transformations in four-dimensions. Nucl. Phys. B. 1974;70:39. doi: 10.1016/0550-3213(74)90355-1. [DOI] [Google Scholar]
  • 4.Nilles H.P. Supersymmetry, supergravity and particle physics. Phys. Rep. 1984;110:1. doi: 10.1016/0370-1573(84)90008-5. [DOI] [Google Scholar]
  • 5.Haber H.E., Kane G.L. The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 1985;117:75. doi: 10.1016/0370-1573(85)90051-1. [DOI] [Google Scholar]
  • 6.Barbieri R., Ferrara S., Savoy C.A. Gauge models with spontaneously broken local supersymmetry. Phys. Lett. B. 1982;119:343. doi: 10.1016/0370-2693(82)90685-2. [DOI] [Google Scholar]
  • 7.Dawson S., Eichten E., Quigg C. Search for supersymmetric particles in hadron–hadron collisions. Phys. Rev. D. 1985;31:1581. doi: 10.1103/PhysRevD.31.1581. [DOI] [PubMed] [Google Scholar]
  • 8.Farrar G.R., Fayet P. Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B. 1978;76:575. doi: 10.1016/0370-2693(78)90858-4. [DOI] [Google Scholar]
  • 9.Feng J.L. Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 2010;48:495. doi: 10.1146/annurev-astro-082708-101659. [DOI] [Google Scholar]
  • 10.Kane G.L., et al. Study of constrained minimal supersymmetry. Phys. Rev. D. 1994;49:6173. doi: 10.1103/PhysRevD.49.6173. [DOI] [PubMed] [Google Scholar]
  • 11.Chamseddine A.H., Arnowitt R.L., Nath P. Locally supersymmetric grand unification. Phys. Rev. Lett. 1982;49:970. doi: 10.1103/PhysRevLett.49.970. [DOI] [Google Scholar]
  • 12. N. Arkani-Hamed et al., MARMOSET: the path from LHC data to the new standard model via on-shell effective theories (2007). arXiv:hep-ph/0703088
  • 13.Alwall J., Schuster P., Toro N. Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D. 2009;79:075020. doi: 10.1103/PhysRevD.79.075020. [DOI] [Google Scholar]
  • 14.Alwall J., et al. Model-independent jets plus missing energy searches. Phys. Rev. D. 2009;79:015005. doi: 10.1103/PhysRevD.79.015005. [DOI] [Google Scholar]
  • 15.LHC New Physics Working Group Collaboration Simplified models for LHC new physics searches. J. Phys. G. 2012;39:105005. doi: 10.1088/0954-3899/39/10/105005. [DOI] [Google Scholar]
  • 16.CMS Collaboration Search for supersymmetry in final states with a single lepton, b-quark jets, and missing transverse energy in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7$\end{document} TeV. Phys. Rev. D. 2012;87:052006. [Google Scholar]
  • 17.ATLAS Collaboration Search for supersymmetry using final states with one lepton, jets, and missing transverse momentum with the ATLAS detector in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7$\end{document} TeV pp collisions. Phys. Rev. Lett. 2011;106:131802. doi: 10.1103/PhysRevLett.106.131802. [DOI] [PubMed] [Google Scholar]
  • 18.ATLAS Collaboration Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7$\end{document} TeV pp collisions using 1 fb−1 of ATLAS data. Phys. Rev. D. 2012;85:012006. doi: 10.1103/PhysRevD.85.012006. [DOI] [Google Scholar]
  • 19.ATLAS Collaboration Further search for supersymmetry at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7$\end{document} TeV in final states with jets, missing transverse momentum and isolated leptons with the ATLAS detector. Phys. Rev. D. 2012;86:092002. doi: 10.1103/PhysRevD.86.092002. [DOI] [Google Scholar]
  • 20.CMS Collaboration Search for physics beyond the standard model in opposite-sign dilepton events at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}= 7$\end{document} TeV. J. High Energy Phys. 2011;06:026. [Google Scholar]
  • 21.CMS Collaboration Measurement of the polarization of W bosons with large transverse momenta in W+Jets events at the LHC. Phys. Rev. Lett. 2011;107:021802. doi: 10.1103/PhysRevLett.107.021802. [DOI] [PubMed] [Google Scholar]
  • 22.CMS Collaboration The CMS experiment at the CERN LHC. J. Instrum. 2008;3:S08004. doi: 10.1088/1748-0221/3/08/S08004. [DOI] [Google Scholar]
  • 23. CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E^{\mathrm{miss}}_{\mathrm{T}}$\end{document}, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009
  • 24. CMS Collaboration, Commissioning of the particle-flow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV. CMS Physics Analysis Summary CMS-PAS-PFT-10-002, 2010
  • 25.GEANT4 Collaboration GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A. 2003;506:250. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 26.Sjöstrand T., Mrenna S., Skands P.Z. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 27. R. Field, Early LHC underlying event data—findings and surprises (2010). arXiv:1010.3558
  • 28.Alwall J., et al. MadGraph 5: going beyond. J. High Energy Phys. 2011;06:128. doi: 10.1007/JHEP06(2011)128. [DOI] [Google Scholar]
  • 29.Frixione S., Nason P., Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 30.CMS Collaboration CMS technical design report, volume II: physics performance. J. Phys. G. 2007;34:995. doi: 10.1088/0954-3899/34/6/S01. [DOI] [Google Scholar]
  • 31.CMS Collaboration The fast simulation of the CMS detector at LHC. J. Phys. Conf. Ser. 2011;331:032049. doi: 10.1088/1742-6596/331/3/032049. [DOI] [Google Scholar]
  • 32.Czarnecki A., Korner J.G., Piclum J.H. Helicity fractions of W bosons from top quark decays at NNLO in QCD. Phys. Rev. D. 2010;81:111503. doi: 10.1103/PhysRevD.81.111503. [DOI] [Google Scholar]
  • 33.ATLAS Collaboration Measurement of the W boson polarization in top quark decays with the ATLAS detector. J. High Energy Phys. 2012;06:088. [Google Scholar]
  • 34.ATLAS Collaboration Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7$\end{document} TeV with the ATLAS experiment. Eur. Phys. J. C. 2012;72:2001. doi: 10.1140/epjc/s10052-012-2001-6. [DOI] [Google Scholar]
  • 35.Mangano M.L., et al. ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 2003;07:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 36.Bern Z., et al. Left-handed W bosons at the LHC. Phys. Rev. D. 2011;84:034008. doi: 10.1103/PhysRevD.84.034008. [DOI] [Google Scholar]
  • 37.Cacciari M., Salam G.P., Soyez G. The anti-k(t) jet clustering algorithm. J. High Energy Phys. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 38.CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS. J. Instrum. 2011;6:P11002. doi: 10.1088/1748-0221/6/11/P11002. [DOI] [Google Scholar]
  • 39.CMS Collaboration Performance of CMS muon reconstruction in pp collision events at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}= 7$\end{document} TeV. J. Instrum. 2012;7:P10002. doi: 10.1088/1748-0221/7/10/P10002. [DOI] [Google Scholar]
  • 40. CMS Collaboration, Electron reconstruction and identification at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s} = 7$\end{document} TeV. CMS Physics Analysis Summary CMS-PAS-EGM-10-004, 2010
  • 41.Pavlunin V. Modeling missing transverse energy in V+jets at CERN LHC. Phys. Rev. D. 2010;81:035005. doi: 10.1103/PhysRevD.81.035005. [DOI] [Google Scholar]
  • 42.Speckmayer P., et al. The toolkit for multivariate data analysis, TMVA 4. J. Phys. Conf. Ser. 2010;219:032057. doi: 10.1088/1742-6596/219/3/032057. [DOI] [Google Scholar]
  • 43. CMS Collaboration, Measuring electron efficiencies at CMS with early data. CMS Physics Analysis Summary CMS-PAS-EGM-07-001, 2008
  • 44. CMS Collaboration, Absolute calibration of the luminosity measurement at CMS: Winter 2012 update. CMS Physics Analysis Summary CMS-PAS-SMP-12-008, 2012
  • 45.Junk T. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods Phys. Res., Sect. A. 1999;434:435. doi: 10.1016/S0168-9002(99)00498-2. [DOI] [Google Scholar]
  • 46. M. Krämer et al., Supersymmetry production cross sections in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{s}=7$\end{document} TeV (2012). arXiv:1206.2892
  • 47. K. Matchev, R. Remington, Updated templates for the interpretation of LHC results on supersymmetry in the context of mSUGRA (2012). arXiv:1202.6580

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

README.txt (3 kB) (3.4KB, txt)

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES